Cluster Sets

· Springer Science & Business Media
Е-книга
136
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

For the first systematic investigations of the theory of cluster sets of analytic functions, we are indebted to IVERSEN [1-3J and GROSS [1-3J about forty years ago. Subsequent important contributions before 1940 were made by SEIDEL [1-2J, DOOE [1-4J, CARTWRIGHT [1-3J and BEURLING [1]. The investigations of SEIDEL and BEURLING gave great impetus and interest to Japanese mathematicians; beginning about 1940 some contributions were made to the theory by KUNUGUI [1-3J, IRIE [IJ, TOKI [IJ, TUMURA [1-2J, KAMETANI [1-4J, TsuJI [4J and NOSHIRO [1-4J. Recently, many noteworthy advances have been made by BAGEMIHL, SEIDEL, COLLINGWOOD, CARTWRIGHT, HERVE, LEHTO, LOHWATER, MEIER, OHTSUKA and many other mathematicians. The main purpose of this small book is to give a systematic account on the theory of cluster sets. Chapter I is devoted to some definitions and preliminary discussions. In Chapter II, we treat extensions of classical results on cluster sets to the case of single-valued analytic functions in a general plane domain whose boundary contains a compact set of essential singularities of capacity zero; it is well-known that HALLSTROM [2J and TsuJI [7J extended independently Nevanlinna's theory of meromorphic functions to the case of a compact set of essential singUlarities of logarithmic capacity zero. Here, Ahlfors' theory of covering surfaces plays a funda mental role. Chapter III "is concerned with functions meromorphic in the unit circle.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.