Classification and Orbit Equivalence Relations

ยท Mathematical Surveys and Monographs แˆ˜แŒฝแˆแ 75 ยท American Mathematical Soc.
แŠข-แˆ˜แŒฝแˆแ
195
แŒˆแŒพแ‰ฝ
แ‹จแ‰ฐแˆฐแŒกแ‰ต แ‹ฐแˆจแŒƒแ‹Žแ‰ฝ แŠฅแŠ“ แŒแˆแŒˆแˆ›แ‹Žแ‰ฝ แ‹จแ‰ฐแˆจแŒ‹แŒˆแŒก แŠ แ‹ญแ‹ฐแˆ‰แˆ ย แ‹จแ‰ แˆˆแŒ  แˆˆแˆ˜แˆจแ‹ณแ‰ต

แˆตแˆˆแ‹šแˆ… แŠข-แˆ˜แŒฝแˆแ

Actions of Polish groups are ubiquitous in mathematics. In certain branches of ergodic theory and functional analysis, one finds a systematic study of the group of measure-preserving transformations and the unitary group. In logic, the analysis of countable models intertwines with results concerning the actions of the infinite symmetric group. This text develops the theory of Polish group actions entirely from scratch, ultimately presenting a coherent theory of the resulting orbit equivalence classes that may allow complete classification by invariants of an indicated form.The book concludes with a criterion for an orbit equivalence relation classifiable by countable structures considered up to isomorphism. This self-contained volume offers a complete treatment of this active area of current research and develops a difficult general theory classifying a class of mathematical objects up to some relevant notion of isomorphism or equivalence. Greg Hjorth received the Carol Karp Prize for outstanding work on turbulence and countable Borel equivalence relations from the Association of Symbolic Logic.

แˆˆแ‹šแˆ… แŠข-แˆ˜แŒฝแˆแ แ‹ฐแˆจแŒƒ แ‹ญแˆตแŒก

แˆแŠ• แŠฅแŠ•แ‹ฐแˆšแ‹ซแˆตแ‰ก แ‹ญแŠ•แŒˆแˆฉแŠ•แข

แ‹จแŠ•แ‰ฃแ‰ฅ แˆ˜แˆจแŒƒ

แ‹˜แˆ˜แŠ“แ‹Š แˆตแˆแŠฎแ‰ฝ แŠฅแŠ“ แŒกแ‰ฃแ‹Šแ‹Žแ‰ฝ
แ‹จGoogle Play แˆ˜แŒฝแˆแแ‰ต แˆ˜แ‰ฐแŒแ‰ แˆชแ‹ซแ‹แŠ• แˆˆAndroid แŠฅแŠ“ iPad/iPhone แ‹ซแ‹แˆญแ‹ฑแข แŠจแŠฅแˆญแˆตแ‹Ž แˆ˜แˆˆแ‹ซ แŒ‹แˆญ แ‰ แˆซแˆตแˆฐแˆญ แ‹ญแˆ˜แˆณแˆฐแˆ‹แˆ แŠฅแŠ“ แ‰ฃแˆ‰แ‰ แ‰ต แ‹จแ‰ตแˆ แ‰ฆแ‰ณ แ‰ แˆ˜แˆตแˆ˜แˆญ แˆ‹แ‹ญ แŠฅแŠ“ แŠจแˆ˜แˆตแˆ˜แˆญ แ‹แŒญ แŠฅแŠ•แ‹ฒแ‹ซแАแ‰ก แ‹ซแˆตแ‰ฝแˆแ‹Žแ‰ณแˆแข
แˆ‹แ•แ‰ถแ–แ‰ฝ แŠฅแŠ“ แŠฎแˆแ’แ‹แ‰ฐแˆฎแ‰ฝ
แ‹จแŠฎแˆแ’แ‹แ‰ฐแˆญแ‹ŽแŠ• แ‹ตแˆญ แŠ แˆณแˆฝ แ‰ฐแŒ แ‰…แˆ˜แ‹ แ‰ Google Play แˆ‹แ‹ญ แ‹จแ‰ฐแŒˆแ‹™ แŠฆแ‹ฒแ‹ฎ แˆ˜แŒฝแˆแแ‰ตแŠ• แˆ›แ‹ณแˆ˜แŒฅ แ‹ญแ‰ฝแˆ‹แˆ‰แข
แŠขแˆชแ‹ฐแˆฎแ‰ฝ แŠฅแŠ“ แˆŒแˆŽแ‰ฝ แˆ˜แˆณแˆชแ‹ซแ‹Žแ‰ฝ
แŠฅแŠ•แ‹ฐ Kobo แŠข-แŠ แŠ•แ‰ฃแ‰ขแ‹Žแ‰ฝ แ‰ฃแˆ‰ แŠข-แ‰€แˆˆแˆ แˆ˜แˆฃแˆชแ‹ซแ‹Žแ‰ฝ แˆ‹แ‹ญ แˆˆแˆ›แŠ•แ‰ แ‰ฅ แ‹แ‹ญแˆ แŠ แ‹แˆญแ‹ฐแ‹ แ‹ˆแ‹ฐ แˆ˜แˆฃแˆชแ‹ซแ‹Ž แˆ›แˆตแ‰ฐแˆ‹แˆˆแ แ‹ญแŠ–แˆญแ‰ฅแ‹Žแ‰ณแˆแข แ‹แ‹ญแˆŽแ‰นแŠ• แ‹ˆแ‹ฐแˆšแ‹ฐแŒˆแ‰ แŠข-แŠ แŠ•แ‰ฃแ‰ขแ‹Žแ‰ฝ แˆˆแˆ›แˆตแ‰ฐแˆ‹แˆˆแ แ‹แˆญแ‹แˆญ แ‹จแŠฅแŒˆแ‹› แˆ›แ‹•แŠจแˆ แˆ˜แˆ˜แˆชแ‹ซแ‹Žแ‰นแŠ• แ‹ญแŠจแ‰ฐแˆ‰แข