Chaos Detection and Predictability

· ·
· Lecture Notes in Physics āļŦāļ™āļąāļ‡āļŠāļ·āļ­āđ€āļĨāđˆāļĄāļ—āļĩāđˆ 915 · Springer
eBook
269
āļŦāļ™āđ‰āļē
āļ„āļ°āđāļ™āļ™āđāļĨāļ°āļĢāļĩāļ§āļīāļ§āđ„āļĄāđˆāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļĒāļ·āļ™āļĒāļąāļ™ Â āļ”āļđāļ‚āđ‰āļ­āļĄāļđāļĨāđ€āļžāļīāđˆāļĄāđ€āļ•āļīāļĄ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļš eBook āđ€āļĨāđˆāļĄāļ™āļĩāđ‰

Distinguishing chaoticity from regularity in deterministic dynamical systems and specifying the subspace of the phase space in which instabilities are expected to occur is of utmost importance in as disparate areas as astronomy, particle physics and climate dynamics.

To address these issues there exists a plethora of methods for chaos detection and predictability. The most commonly employed technique for investigating chaotic dynamics, i.e. the computation of Lyapunov exponents, however, may suffer a number of problems and drawbacks, for example when applied to noisy experimental data.

In the last two decades, several novel methods have been developed for the fast and reliable determination of the regular or chaotic nature of orbits, aimed at overcoming the shortcomings of more traditional techniques. This set of lecture notes and tutorial reviews serves as an introduction to and overview of modern chaos detection and predictability techniquesfor graduate students and non-specialists.

The book covers theoretical and computational aspects of traditional methods to calculate Lyapunov exponents, as well as of modern techniques like the Fast (FLI), the Orthogonal (OFLI) and the Relative (RLI) Lyapunov Indicators, the Mean Exponential Growth factor of Nearby Orbits (MEGNO), the Smaller (SALI) and the Generalized (GALI) Alignment Index and the ‘0-1’ test for chaos.

āđƒāļŦāđ‰āļ„āļ°āđāļ™āļ™ eBook āļ™āļĩāđ‰

āđāļŠāļ”āļ‡āļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļ„āļļāļ“āđƒāļŦāđ‰āđ€āļĢāļēāļĢāļąāļšāļĢāļđāđ‰

āļ‚āđ‰āļ­āļĄāļđāļĨāđƒāļ™āļāļēāļĢāļ­āđˆāļēāļ™

āļŠāļĄāļēāļĢāđŒāļ—āđ‚āļŸāļ™āđāļĨāļ°āđāļ—āđ‡āļšāđ€āļĨāđ‡āļ•
āļ•āļīāļ”āļ•āļąāđ‰āļ‡āđāļ­āļ› Google Play Books āļŠāļģāļŦāļĢāļąāļš Android āđāļĨāļ° iPad/iPhone āđāļ­āļ›āļˆāļ°āļ‹āļīāļ‡āļ„āđŒāđ‚āļ”āļĒāļ­āļąāļ•āđ‚āļ™āļĄāļąāļ•āļīāļāļąāļšāļšāļąāļāļŠāļĩāļ‚āļ­āļ‡āļ„āļļāļ“ āđāļĨāļ°āļŠāđˆāļ§āļĒāđƒāļŦāđ‰āļ„āļļāļ“āļ­āđˆāļēāļ™āđāļšāļšāļ­āļ­āļ™āđ„āļĨāļ™āđŒāļŦāļĢāļ·āļ­āļ­āļ­āļŸāđ„āļĨāļ™āđŒāđ„āļ”āđ‰āļ—āļļāļāļ—āļĩāđˆ
āđāļĨāđ‡āļ›āļ—āđ‡āļ­āļ›āđāļĨāļ°āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒ
āļ„āļļāļ“āļŸāļąāļ‡āļŦāļ™āļąāļ‡āļŠāļ·āļ­āđ€āļŠāļĩāļĒāļ‡āļ—āļĩāđˆāļ‹āļ·āđ‰āļ­āļˆāļēāļ Google Play āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ§āđ‡āļšāđ€āļšāļĢāļēāļ§āđŒāđ€āļ‹āļ­āļĢāđŒāđƒāļ™āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒāđ„āļ”āđ‰
eReader āđāļĨāļ°āļ­āļļāļ›āļāļĢāļ“āđŒāļ­āļ·āđˆāļ™āđ†
āļŦāļēāļāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ­āđˆāļēāļ™āļšāļ™āļ­āļļāļ›āļāļĢāļ“āđŒ e-ink āđ€āļŠāđˆāļ™ Kobo eReader āļ„āļļāļ“āļˆāļ°āļ•āđ‰āļ­āļ‡āļ”āļēāļ§āļ™āđŒāđ‚āļŦāļĨāļ”āđāļĨāļ°āđ‚āļ­āļ™āđ„āļŸāļĨāđŒāđ„āļ›āļĒāļąāļ‡āļ­āļļāļ›āļāļĢāļ“āđŒāļ‚āļ­āļ‡āļ„āļļāļ“ āđ‚āļ›āļĢāļ”āļ—āļģāļ•āļēāļĄāļ§āļīāļ˜āļĩāļāļēāļĢāļ­āļĒāđˆāļēāļ‡āļĨāļ°āđ€āļ­āļĩāļĒāļ”āđƒāļ™āļĻāļđāļ™āļĒāđŒāļŠāđˆāļ§āļĒāđ€āļŦāļĨāļ·āļ­āđ€āļžāļ·āđˆāļ­āđ‚āļ­āļ™āđ„āļŸāļĨāđŒāđ„āļ›āļĒāļąāļ‡ eReader āļ—āļĩāđˆāļĢāļ­āļ‡āļĢāļąāļš