Calculus in 3D

· AMS/MAA Textbooks Cartea 40 · American Mathematical Soc.
Carte electronică
405
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Calculus in 3D is an accessible, well-written textbook for an honors course in multivariable calculus for mathematically strong first- or second-year university students. The treatment given here carefully balances theoretical rigor, the development of student facility in the procedures and algorithms, and inculcating intuition into underlying geometric principles. The focus throughout is on two or three dimensions. All of the standard multivariable material is thoroughly covered, including vector calculus treated through both vector fields and differential forms. There are rich collections of problems ranging from the routine through the theoretical to deep, challenging problems suitable for in-depth projects. Linear algebra is developed as needed. Unusual features include a rigorous formulation of cross products and determinants as oriented area, an in-depth treatment of conics harking back to the classical Greek ideas, and a more extensive than usual exploration and use of parametrized curves and surfaces.

Zbigniew Nitecki is Professor of Mathematics at Tufts University and a leading authority on smooth dynamical systems. He is the author of Differentiable Dynamics, MIT Press; Differential Equations, A First Course (with M. Guterman), Saunders; Differential Equations with Linear Algebra (with M. Guterman), Saunders; and Calculus Deconstructed, AMS. 

Despre autor

Zbigniew Nitecki: Tufts University, Medford, MA

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.