Calcolo integrale

· ·
EGEA spa
E-grāmata
44
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

Numerose questioni di natura finanziaria, statistica o probabilistica conducono naturalmente al calcolo integrale e spiegano quindi la necessità d’occuparsene. Dopo le operazioni di limite e di derivazione è questa la terza tra le operazioni fondamentali del cosiddetto calcolo infinitesimale. Lo sviluppo logico del capitolo è il seguente. Un esempio introduttivo relativo al calcolo di un’area guida alla definizione di integrale secondo Riemann. Si affronta poi uno dei punti importanti della teoria, cioè la connessione col calcolo differenziale. Il risultato è espresso dal primo teorema fondamentale, che fornisce anche la formula di calcolo degli integrali per variazione d’una primitiva. S’introduce l’integrale indefinito e si descrivono i principali metodi di calcolo. La definizione d’integrale definito è estesa a funzioni non limitate e a intervalli non limitati. Ciò risulta particolarmente importante per le applicazioni alla statistica e al calcolo delle probabilità.

Par autoru

Lorenzo Peccati is Full Professor of Mathematics at Bocconi University in Milan, he is a specialist in Financial and Business Mathematics.

Sandro Salsa is Full Professor of Mathematical Analysis at the Politecnico di Milano, Milan, Italy.

Annamaria Squellati was formerly Lecturer of Mathematics at the Università Bocconi, Milan, Italy.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.