Bilagebraic Structures and Smarandache Bialgebraic Structures

· Infinite Study
Е-книга
270
Страници
Соодветна
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

Generally the study of algebraic structures deals with the concepts like groups, semigroups, groupoids, loops, rings, near-rings, semirings, and vector spaces. The study of bialgebraic structures deals with the study of bistructures like bigroups, biloops, bigroupoids, bisemigroups, birings, binear-rings, bisemirings and bivector spaces. A complete study of these bialgebraic structures and their Smarandache analogues is carried out in this book. For examples: A set (S, +, *) with two binary operations ?+? and '*' is called a bisemigroup of type II if there exists two proper subsets S1 and S2 of S such that S = S1 U S2 and(S1, +) is a semigroup.(S2, *) is a semigroup. Let (S, +, *) be a bisemigroup. We call (S, +, *) a Smarandache bisemigroup (S-bisemigroup) if S has a proper subset P such that (P, +, *) is a bigroup under the operations of S. Let (L, +, *) be a non empty set with two binary operations. L is said to be a biloop if L has two nonempty finite proper subsets L1 and L2 of L such that L = L1 U L2 and(L1, +) is a loop, (L2, *) is a loop or a group. Let (L, +, *) be a biloop we call L a Smarandache biloop (S-biloop) if L has a proper subset P which is a bigroup. Let (G, +, *) be a non-empty set. We call G a bigroupoid if G = G1 U G2 and satisfies the following:(G1 , +) is a groupoid (i.e. the operation + is non-associative), (G2, *) is a semigroup. Let (G, +, *) be a non-empty set with G = G1 U G2, we call G a Smarandache bigroupoid (S-bigroupoid) if G1 and G2 are distinct proper subsets of G such that G = G1 U G2 (neither G1 nor G2 are included in each other), (G1, +) is a S-groupoid.(G2, *) is a S-semigroup.A nonempty set (R, +, *) with two binary operations ?+? and '*' is said to be a biring if R = R1 U R2 where R1 and R2 are proper subsets of R and (R1, +, *) is a ring, (R2, +, ?) is a ring.A Smarandache biring (S-biring) (R, +, *) is a non-empty set with two binary operations ?+? and '*' such that R = R1 U R2 where R1 and R2 are proper subsets of R and(R1, +, *) is a S-ring, (R2, +, *) is a S-ring.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.