Bilagebraic Structures and Smarandache Bialgebraic Structures

· Infinite Study
Ebook
270
Pages
Admissible
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

Generally the study of algebraic structures deals with the concepts like groups, semigroups, groupoids, loops, rings, near-rings, semirings, and vector spaces. The study of bialgebraic structures deals with the study of bistructures like bigroups, biloops, bigroupoids, bisemigroups, birings, binear-rings, bisemirings and bivector spaces. A complete study of these bialgebraic structures and their Smarandache analogues is carried out in this book. For examples: A set (S, +, *) with two binary operations ?+? and '*' is called a bisemigroup of type II if there exists two proper subsets S1 and S2 of S such that S = S1 U S2 and(S1, +) is a semigroup.(S2, *) is a semigroup. Let (S, +, *) be a bisemigroup. We call (S, +, *) a Smarandache bisemigroup (S-bisemigroup) if S has a proper subset P such that (P, +, *) is a bigroup under the operations of S. Let (L, +, *) be a non empty set with two binary operations. L is said to be a biloop if L has two nonempty finite proper subsets L1 and L2 of L such that L = L1 U L2 and(L1, +) is a loop, (L2, *) is a loop or a group. Let (L, +, *) be a biloop we call L a Smarandache biloop (S-biloop) if L has a proper subset P which is a bigroup. Let (G, +, *) be a non-empty set. We call G a bigroupoid if G = G1 U G2 and satisfies the following:(G1 , +) is a groupoid (i.e. the operation + is non-associative), (G2, *) is a semigroup. Let (G, +, *) be a non-empty set with G = G1 U G2, we call G a Smarandache bigroupoid (S-bigroupoid) if G1 and G2 are distinct proper subsets of G such that G = G1 U G2 (neither G1 nor G2 are included in each other), (G1, +) is a S-groupoid.(G2, *) is a S-semigroup.A nonempty set (R, +, *) with two binary operations ?+? and '*' is said to be a biring if R = R1 U R2 where R1 and R2 are proper subsets of R and (R1, +, *) is a ring, (R2, +, ?) is a ring.A Smarandache biring (S-biring) (R, +, *) is a non-empty set with two binary operations ?+? and '*' such that R = R1 U R2 where R1 and R2 are proper subsets of R and(R1, +, *) is a S-ring, (R2, +, *) is a S-ring.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.