Endliche Permutationsgruppen

· Springer-Verlag
Ebook
260
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Dieses Buch über Permutationsgruppen bietet neben modernen Beweisen klassischer Ergebnisse, die bislang nicht in Buchform erschienen sind, einen Zugang zur Klassifikation der primitiven Gruppen. Symmetriebetrachtungen von geometrischen Objekten spielen in vielen Naturwissenschaften eine bedeutende Rolle und lassen sich mathematisch durch Permutationsgruppen modellieren. Nachdem wir in diesem Buch eine beliebige Permutationsgruppe in ihre primitiven Bestandteile zerlegt haben, beweisen wir den wichtigen Klassifikationssatz von Aschbacher-O'Nan-Scott, wonach jede primitive Gruppe zu genau einer von fünf Familien gehört. Dieses Resultat erlaubt es zum Beispiel die 2-transitiven Gruppen explizit anzugeben, sodass wir uns im Folgenden auf die primitiven Gruppen, die nicht 2-transitiv sind, konzentrieren können. Die hierfür entwickelte Theorie der Subgrade ermöglicht uns als Anwendung einen Spezialfall des Satzes von Feit-Thompson zu beweisen. Neben zahlreichen Informationen über aktuelle Entwicklungen stehen dem Studierenden über 100 Übungsaufgaben mit vollständigen Lösungen zur Selbstkontrolle zur Verfügung. Vorausgesetzt werden lediglich Kenntnisse einer Algebra-Vorlesung, wobei wir die Grundlagen der elementaren Gruppentheorie im ersten Kapitel wiederholen. Abgerundet wird das Werk durch einen Anhang mit alternativen Beweisen und Quellcodes für die Computeralgebrasysteme GAP und MAGMA.

About the author

Dr. Benjamin Sambale, Fachbereich Mathematik, Technische Universität Kaiserslautern

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.