Bayesian Statistics, New Generations New Approaches: BAYSM 2022, Montréal, Canada, June 22–23

· ·
· Springer Proceedings in Mathematics & Statistics 435권 · Springer Nature
eBook
115
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This book hosts the results presented at the 6th Bayesian Young Statisticians Meeting 2022 in Montréal, Canada, held on June 22–23, titled "Bayesian Statistics, New Generations New Approaches". This collection features selected peer-reviewed contributions that showcase the vibrant and diverse research presented at meeting.

This book is intended for a broad audience interested in statistics and aims at providing stimulating contributions to theoretical, methodological, and computational aspects of Bayesian statistics. The contributions highlight various topics in Bayesian statistics, presenting promising methodological approaches to address critical challenges across diverse applications. This compilation stands as a testament to the talent and potential within the j-ISBA community.

This book is meant to serve as a catalyst for continued advancements in Bayesian methodology and its applications and encourages fruitful collaborations that push the boundaries ofstatistical research.

저자 정보

Alejandra Avalos-Pacheco is an Universitätsassistent (Assistant Professor non-tenure track) in the Research Unit of Applied Statistics (ASTAT) at the Vienna University of Technology (TU Wien) and an affiliated member of the Harvard-MIT Center for Regulatory Science (CRS). Previously, she was a research fellow in statistics at the University of Florence. Prior to that, she was a postdoctoral fellow in Statistics at the CRS, Harvard University, and part of the Dana-Farber Cancer Institute. She holds a Ph.D. in Statistics from OxWASP, a joint program between the University of Warwick and Oxford. Her Ph.D. thesis was granted the 2019 Savage award in Applied Methodology. Her main research interests include high-dimensional inference, data integration and applied Bayesian statistical modelling. She is the current j-ISBA chair and a member of the BAYSM board.

Roberta De Vito is an assistant Professor in the department of Biostatistics and at the Data Science Initiative at Brown University. She completed her Ph.D. in Statistical Science at the University of Padua, advised by Giovanni Parmigiani at Harvard University and the Dana Farber Cancer Institute, where she developed her thesis work. Then, she was a postdoc at Princeton University in Barbara Engelhardt’s group where she developed Bayesian and latent variable discrete model in high-dimensional biological and epidemiological data. Her main research interest is latent variable model, Bayesian non parametric, variable selection via sparsity prior, machine learning and big data with particular focus on genomics and epidemiology.

Florian Maire is an Assistant Professor at the Department of Mathematics and Statistics of Université de Montréal. He was a Postdoctoral Fellow at Insight SFI Research Centre for Data Analytics, University College Dublin. He holds a Ph.D. in Applied Mathematics from Telecom SudParis, Institut Mines-Telecom and Université Paris Cité (ex Université Paris 6). In 2016, he was awarded the DGA Prize for best Ph.D. by the French Ministry of Higher Education and Research and Ministry of Defence. His main research interests are in Computational Statistics and Machine Learning.


이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.