Bayesian Econometric Methods: Edition 2

· · ·
· Cambridge University Press
電子書籍
491
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

Bayesian Econometric Methods examines principles of Bayesian inference by posing a series of theoretical and applied questions and providing detailed solutions to those questions. This second edition adds extensive coverage of models popular in finance and macroeconomics, including state space and unobserved components models, stochastic volatility models, ARCH, GARCH, and vector autoregressive models. The authors have also added many new exercises related to Gibbs sampling and Markov Chain Monte Carlo (MCMC) methods. The text includes regression-based and hierarchical specifications, models based upon latent variable representations, and mixture and time series specifications. MCMC methods are discussed and illustrated in detail - from introductory applications to those at the current research frontier - and MATLAB® computer programs are provided on the website accompanying the text. Suitable for graduate study in economics, the text should also be of interest to students studying statistics, finance, marketing, and agricultural economics.

著者について

Joshua Chan is Professor of Economics at Purdue University, Indiana. He is interested in building flexible models for large datasets and developing efficient estimation methods. His favorite applications include trend inflation estimation and macroeconomic forecasting. He has co-authored the textbook Statistical Modeling and Computation (2013).

Gary Koop is a professor in the Department of Economics at the University of Strathclyde. He received his Ph.D. at the University of Toronto in 1989. His research work in Bayesian econometrics has resulted in numerous publications in top econometrics journals such as the Journal of Econometrics. He has also published several textbooks, including Bayesian Econometrics, and Bayesian Econometric Methods, and is co-editor of The Oxford Handbook of Bayesian Econometrics (2011). He is on the editorial board of several journals, including the Journal of Business and Economic Statistics and the Journal of Applied Econometrics.

Dale J. Poirier is Emeritus Professor of Economics and Statistics at the University of California, Irvine. He is a fellow of the Econometric Society, the American Statistical Association, the International Society for Bayesian Analysis, and the Journal of Econometrics. He has been on the Editorial Boards of the Journal of Econometrics and Econometric Theory, and was the founding editor of Econometric Reviews. His previous books include Intermediate Statistics and Econometrics: A Comparative Approach (1995), and The Econometrics of Structural Change (1976).

Justin L. Tobias is Professor and Head of the Economics Department at Purdue University, Indiana. He received his Ph.D. from the University of Chicago in 1999 and has contributed to and served as an Associate Editor for several leading econometrics journals, including the Journal of Applied Econometrics and the Journal of Business and Economic Statistics. His work focuses primarily on the development and application of Bayesian microeconometric methods.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。