Axiomatic Set Theory

Β·
· Graduate Texts in Mathematics Книга 8 · Springer Science & Business Media
Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°
238
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
ΠžΡ†Π΅Π½ΠΊΠΈΡ‚Π΅ ΠΈ ΠΎΡ‚Π·ΠΈΠ²ΠΈΡ‚Π΅ Π½Π΅ са ΠΏΠΎΡ‚Π²ΡŠΡ€Π΄Π΅Π½ΠΈ  НаучСтС ΠΏΠΎΠ²Π΅Ρ‡Π΅

Всичко Π·Π° Ρ‚Π°Π·ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°

This text deals with three basic techniques for constructing models of Zermelo-Fraenkel set theory: relative constructibility, Cohen's forcing, and Scott-Solovay's method of Boolean valued models. Our main concern will be the development of a unified theory that encompasses these techniques in one comprehensive framework. Consequently we will focus on certain funda mental and intrinsic relations between these methods of model construction. Extensive applications will not be treated here. This text is a continuation of our book, "I ntroduction to Axiomatic Set Theory," Springer-Verlag, 1971; indeed the two texts were originally planned as a single volume. The content of this volume is essentially that of a course taught by the first author at the University of Illinois in the spring of 1969. From the first author's lectures, a first draft was prepared by Klaus Gloede with the assistance of Donald Pelletier and the second author. This draft was then rcvised by the first author assisted by Hisao Tanaka. The introductory material was prepared by the second author who was also responsible for the general style of exposition throughout the text. We have inc1uded in the introductory material al1 the results from Boolean algebra and topology that we need. When notation from our first volume is introduced, it is accompanied with a deflnition, usually in a footnote. Consequently a reader who is familiar with elementary set theory will find this text quite self-contained.

ΠžΡ†Π΅Π½Π΅Ρ‚Π΅ Ρ‚Π°Π·ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°

ΠšΠ°ΠΆΠ΅Ρ‚Π΅ Π½ΠΈ ΠΊΠ°ΠΊΠ²ΠΎ мислитС.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ Π·Π° Ρ‡Π΅Ρ‚Π΅Π½Π΅Ρ‚ΠΎ

Π‘ΠΌΠ°Ρ€Ρ‚Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°ΠΉΡ‚Π΅ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅Ρ‚ΠΎ Google Play Книги Π·Π° Android ΠΈ iPad/iPhone. Π’ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ сС синхронизира с ΠΏΡ€ΠΎΡ„ΠΈΠ»Π° Π²ΠΈ ΠΈ Π²ΠΈ позволява Π΄Π° Ρ‡Π΅Ρ‚Π΅Ρ‚Π΅ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°ΠΉΠ½, ΠΊΡŠΠ΄Π΅Ρ‚ΠΎ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡŽΡ‚Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π·Π°ΠΊΡƒΠΏΠ΅Π½ΠΈΡ‚Π΅ ΠΎΡ‚ Google Play Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ посрСдством ΡƒΠ΅Π± Π±Ρ€Π°ΡƒΠ·ΡŠΡ€Π° Π½Π° ΠΊΠΎΠΌΠΏΡŽΡ‚ΡŠΡ€Π° си.
Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ Ρ‡Π΅Ρ‚Ρ†ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ устройства
Π—Π° Π΄Π° Ρ‡Π΅Ρ‚Π΅Ρ‚Π΅ Π½Π° устройства с Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ мастило, ΠΊΠ°Ρ‚ΠΎ Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ‚Π΅ Ρ‡Π΅Ρ‚Ρ†ΠΈ ΠΎΡ‚ Kobo, трябва Π΄Π° ΠΈΠ·Ρ‚Π΅Π³Π»ΠΈΡ‚Π΅ Ρ„Π°ΠΉΠ» ΠΈ Π΄Π° Π³ΠΎ ΠΏΡ€Π΅Ρ…Π²ΡŠΡ€Π»ΠΈΡ‚Π΅ Π½Π° устройството си. Π˜Π·ΠΏΡŠΠ»Π½Π΅Ρ‚Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΈΡ‚Π΅ инструкции Π² ΠŸΠΎΠΌΠΎΡ‰Π½ΠΈΡ Ρ†Π΅Π½Ρ‚ΡŠΡ€, Π·Π° Π΄Π° ΠΏΡ€Π΅Ρ…Π²ΡŠΡ€Π»ΠΈΡ‚Π΅ Ρ„Π°ΠΉΠ»ΠΎΠ²Π΅Ρ‚Π΅ Π² ΠΏΠΎΠ΄Π΄ΡŠΡ€ΠΆΠ°Π½ΠΈΡ‚Π΅ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ Ρ‡Π΅Ρ‚Ρ†ΠΈ.

ΠŸΡ€ΠΎΠ΄ΡŠΠ»ΠΆΠ°Π²Π°Π½Π΅ Π½Π° ΠΏΠΎΡ€Π΅Π΄ΠΈΡ†Π°Ρ‚Π°

ΠžΡ‰Π΅ ΠΎΡ‚ G. Takeuti

Подобни Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ ΠΊΠ½ΠΈΠ³ΠΈ