Twisted Morse Complexes: Morse Homology and Cohomology with Local Coefficients

· Springer Nature
Ebook
158
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book gives a detailed presentation of twisted Morse homology and cohomology on closed finite-dimensional smooth manifolds. It contains a complete proof of the Twisted Morse Homology Theorem, which says that on a closed finite-dimensional smooth manifold the homology of the Morse–Smale–Witten chain complex with coefficients in a bundle of abelian groups G is isomorphic to the singular homology of the manifold with coefficients in G. It also includes proofs of twisted Morse-theoretic versions of well-known theorems such as Eilenberg's Theorem, the Poincaré Lemma, and the de Rham Theorem. The effectiveness of twisted Morse complexes is demonstrated by computing the Lichnerowicz cohomology of surfaces, giving obstructions to spaces being associative H-spaces, and computing Novikov numbers. Suitable for a graduate level course, the book may also be used as a reference for graduate students and working mathematicians or physicists.

About the author

Augustin Banyaga is a Professor of Mathematics and a Distinguished Senior Scholar at Penn State University in the Eberly College of Science and a Fellow of the African Academy of Sciences. He has authored at least 70 peer reviewed papers and 3 books, including Lectures on Morse Homology published by Springer.

David Hurtubise is a Professor of Mathematics at Penn State Altoona. He has authored at least 14 peer reviewed papers, 140 Mathematical Reviews, 45 Zentralblatt Reviews, and the book Lectures on Morse Homology published by Springer.

Peter Spaeth is a Senior Research Scientist at NASA’s Langley Research Center. He has authored over 20 peer reviewed papers in mathematics, materials science, and nondestructive evaluation. In 2023 he was awarded the NASA Early Career Achievement Medal.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.