Asymptotic Attainability

· Mathematics and Its Applications Livre 383 · Springer Science & Business Media
E-book
322
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

In this monograph, questions of extensions and relaxations are consid ered. These questions arise in many applied problems in connection with the operation of perturbations. In some cases, the operation of "small" per turbations generates "small" deviations of basis indexes; a corresponding stability takes place. In other cases, small perturbations generate spas modic change of a result and of solutions defining this result. These cases correspond to unstable problems. The effect of an unstability can arise in extremal problems or in other related problems. In this connection, we note the known problem of constructing the attainability domain in con trol theory. Of course, extremal problems and those of attainability (in abstract control theory) are connected. We exploit this connection here (see Chapter 5). However, basic attention is paid to the problem of the attainability of elements of a topological space under vanishing perturba tions of restrictions. The stability property is frequently missing; the world of unstable problems is of interest for us. We construct regularizing proce dures. However, in many cases, it is possible to establish a certain property similar to partial stability. We call this property asymptotic nonsensitivity or roughness under the perturbation of some restrictions. The given prop erty means the following: in the corresponding problem, it is the same if constraints are weakened in some "directions" or not. On this basis, it is possible to construct a certain classification of constraints, selecting "di rections of roughness" and "precision directions".

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.