Aspects of Statistical Inference

┬╖ John Wiley & Sons
рмЗрммрнБрмХрнН
480
рмкрнГрм╖рнНрмарм╛рмЧрнБрнЬрм┐рмХ
рм░рнЗрмЯрм┐рмВ рмУ рм╕рморнАрмХрнНрм╖рм╛рмЧрнБрнЬрм┐рмХрнБ рмпрм╛рмЮрнНрмЪ рмХрм░рм╛рмпрм╛рмЗрмирм╛рм╣рм┐рмБ ┬армЕрмзрм┐рмХ рмЬрм╛рмгрмирнНрмдрнБ

рмПрм╣рм┐ рмЗрммрнБрмХрнН рммрм┐рм╖рнЯрм░рнЗ

Relevant, concrete, and thorough--the essential data-based text onstatistical inference

The ability to formulate abstract concepts and draw conclusionsfrom data is fundamental to mastering statistics. Aspects ofStatistical Inference equips advanced undergraduate and graduatestudents with a comprehensive grounding in statistical inference,including nonstandard topics such as robustness, randomization, andfinite population inference.

A. H. Welsh goes beyond the standard texts and expertly synthesizesbroad, critical theory with concrete data and relevant topics. Thetext follows a historical framework, uses real-data sets andstatistical graphics, and treats multiparameter problems, yet isultimately about the concepts themselves.

Written with clarity and depth, Aspects of Statistical Inference:
* Provides a theoretical and historical grounding in statisticalinference that considers Bayesian, fiducial, likelihood, andfrequentist approaches
* Illustrates methods with real-data sets on diabetic retinopathy,the pharmacological effects of caffeine, stellar velocity, andindustrial experiments
* Considers multiparameter problems
* Develops large sample approximations and shows how to use them
* Presents the philosophy and application of robustness theory
* Highlights the central role of randomization in statistics
* Uses simple proofs to illuminate foundational concepts
* Contains an appendix of useful facts concerning expansions,matrices, integrals, and distribution theory

Here is the ultimate data-based text for comparing and presentingthe latest approaches to statistical inference.

рм▓рнЗрмЦрмХрмЩрнНрмХ рммрм┐рм╖рнЯрм░рнЗ

A. H. WELSH is a Reader of Statistics at the Australian National University in Canberra, Australia.

рмПрм╣рм┐ рмЗрммрнБрмХрнНтАНрмХрнБ рморнВрм▓рнНрнЯрм╛рмЩрнНрмХрми рмХрм░рмирнНрмдрнБ

рмЖрмкрмг рмХрмг рмнрм╛рммрнБрмЫрмирнНрмдрм┐ рмдрм╛рм╣рм╛ рмЖрмормХрнБ рмЬрмгрм╛рмирнНрмдрнБред

рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмдрмернНрнЯ

рм╕рнНрморм╛рм░рнНрмЯрмлрнЛрми рмУ рмЯрм╛рммрм▓рнЗрмЯ
Google Play Books рмЖрмкрнНрмХрнБ, Android рмУ iPad/iPhone рмкрм╛рмЗрмБ рмЗрмирм╖рнНрмЯрм▓рнН рмХрм░рмирнНрмдрнБред рмПрм╣рм╛ рм╕рнНрм╡рмЪрм╛рм│рм┐рмд рмнрм╛рммрнЗ рмЖрмкрмгрмЩрнНрмХ рмЖрмХрм╛рмЙрмгрнНрмЯрм░рнЗ рм╕рм┐рмЩрнНрмХ рм╣рнЛтАНрмЗрмпрм┐рмм рмПрммрмВ рмЖрмкрмг рмпрнЗрмЙрмБрмарм┐ рмерм╛рмЖрмирнНрмдрнБ рмирм╛ рмХрм╛рм╣рм┐рмБрмХрм┐ рмЖрмирм▓рм╛рмЗрмирнН рмХрм┐рморнНрммрм╛ рмЕрмлрм▓рм╛рмЗрмирнНтАНрм░рнЗ рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмЕрмирнБрмормдрм┐ рмжрнЗрммред
рм▓рм╛рмкрмЯрмк рмУ рмХрморнНрмкрнНрнЯрнБрмЯрм░
рмирм┐рмЬрм░ рмХрморнНрмкрнНрнЯрнБрмЯрм░рнНтАНрм░рнЗ рмерм┐рммрм╛ рн▒рнЗрммрнН рммрнНрм░рм╛рмЙрмЬрм░рнНтАНрмХрнБ рммрнНрнЯрммрм╣рм╛рм░ рмХрм░рм┐ Google Playрм░рнБ рмХрм┐рмгрм┐рмерм┐рммрм╛ рмЕрмбрм┐рмУрммрнБрмХрнНтАНрмХрнБ рмЖрмкрмг рм╢рнБрмгрм┐рмкрм╛рм░рм┐рммрнЗред
рмЗ-рм░рм┐рмбрм░рнН рмУ рмЕрмирнНрнЯ рмбрм┐рмнрм╛рмЗрм╕рнНтАНрмЧрнБрнЬрм┐рмХ
Kobo eReaders рмкрм░рм┐ e-ink рмбрм┐рмнрм╛рмЗрм╕рмЧрнБрмбрм╝рм┐рмХрм░рнЗ рмкрмврм╝рм┐рммрм╛ рмкрм╛рмЗрмБ, рмЖрмкрмгрмЩрнНрмХрнБ рмПрмХ рмлрм╛рмЗрм▓ рмбрм╛рмЙрмирм▓рнЛрмб рмХрм░рм┐ рмПрм╣рм╛рмХрнБ рмЖрмкрмгрмЩрнНрмХ рмбрм┐рмнрм╛рмЗрм╕рмХрнБ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛рмХрнБ рм╣рнЗрммред рм╕рморм░рнНрмерм┐рмд eReadersрмХрнБ рмлрм╛рмЗрм▓рмЧрнБрмбрм╝рм┐рмХ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛ рмкрм╛рмЗрмБ рм╕рм╣рм╛рнЯрмдрм╛ рмХрнЗрмирнНрмжрнНрм░рм░рнЗ рмерм┐рммрм╛ рм╕рммрм┐рм╢рнЗрм╖ рмирм┐рм░рнНрмжрнНрмжрнЗрм╢рм╛рммрм│рнАрмХрнБ рмЕрмирнБрм╕рм░рмг рмХрм░рмирнНрмдрнБред