Approximate Fixed Points of Nonexpansive Mappings

· Developments in Mathematics Libro 80 · Springer Nature
eBook
526
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Fixed point theory of nonlinear operators has been a rapidly growing area of research and plays an important role in the study of variational inequalities, monotone operators, feasibility problems, and optimization theory, to name just several. This book discusses iteration processes associated with a given nonlinear mapping which generate its approximate fixed point and in some cases converge to a fixed point of the mapping. Various classes of nonlinear single-valued and set-valued mappings are considered along with iteration processes under the presence of computational errors. Of particular interest to mathematicians working in fixed point theory and nonlinear analysis, the added value for the reader are the solutions presented to a number of difficult problems in the fixed point theory which have important applications.

Acerca del autor

Alexander J. Zaslavski is a senior researcher at the Technion - Israel Institute of Technology. He was born in Ukraine in 1957 and got his PhD in Mathematical Analysis in 1983, The Institute of Mathematics, Novosibirsk. He is the author of 26 research monographs and more than 600 research papers and editor of more than 70 edited volumes and journal special issues. He is the Founding Editor and Editor-in Chief of the journal Pure and Applied Functional Analysis, and Editor-in-Chief of the journal Communications in Optimization Theory. His area of research contains nonlinear functional analysis, control theory, optimization, calculus of variations, dynamical systems theory, game theory and mathematical economics.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.