Approximate Computing Techniques: From Component- to Application-Level

┬╖ ┬╖
┬╖ Springer Nature
рдИ-рдмреБрдХ
531
рдкреЗрдЬ
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ

рдЗрд╕ рдИ-рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

This book serves as a single-source reference to the latest advances in Approximate Computing (AxC), a promising technique for increasing performance or reducing the cost and power consumption of a computing system. The authors discuss the different AxC design and validation techniques, and their integration. They also describe real AxC applications, spanning from mobile to high performance computing and also safety-critical applications.

рд▓реЗрдЦрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ

Alberto Bosio received his PhD in Computer Engineering from the Politecnico di Torino, Italy in 2006. From 2007 to 2018 was an Associate Professor at LIRMM - University of Montpellier in France. He is now a Full Professor at the INL - Ecole Centrale de Lyon - Institute of Nanotechnology (France). His research interests include Approximate Computing, In-Memory Computing, Test and Diagnosis of Digital circuits and systems and Reliability. He co-authored 3 books and 4 book-chapter, 4 patents, 46 papers in international journals and more than 152 papers in international conferences and workshops book, 3 patents, 35 journals, and over 120 conference papers. He will be is the chair of the European Test Technology Technical Council - IEEE eTTTCETTTC from January 2018 and . He is a member of the IEEE.

Daniel Menard received the Ph.D. and HDR degrees in Signal Processing and Telecommunications from the University of Rennes, respectively in 2002 and 2011. From 2003 to 2012he was Associate Professor at the University of Rennes in France. He is currently Full Professor at INSA Rennes. His research activities focus on the energy efficient implementation of signal and image processing applications in embedded systems. His research topics include approximate computing, accuracy evaluation, fixed-point arithmetic, energy optimization in MPSoC and low power HEVC video encoding and decoding. He has published more than 100 papers in international journals and in international conferences. He is a member of the ASPS Technical Committee of the IEEE Signal Processing Society.

Olivier Sentieys is a Professor at the University of Rennes and holds an Inria Research Chair on Energy-Efficient Computing Systems. He is leading the Taran team common to Inria (French research institute dedicated to computational sciences) and IRISA Laboratory. His research interests are in the area of computer architectures, embedded systems and signal processing, with a focus on system-level design, energy-efficiency, reconfigurable systems, hardware acceleration, approximate computing, fault tolerance, and power management of energy-harvesting sensor networks. He authored or co-authored more than 250 journal or conference papers, holds 6 patents, and served in the technical committees of several international IEEE/ACM/IFIP conferences.


рдЗрд╕ рдИ-рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдкрдарди рдЬрд╛рдирдХрд╛рд░реА

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИ рдСрдбрд┐рдпреЛ рдХрд┐рддрд╛рдмреЗрдВ рд╕реБрди рд╕рдХрддреЗ рд╣реИрдВ.
eReaders рдФрд░ рдЕрдиреНрдп рдбрд┐рд╡рд╛рдЗрд╕
Kobo рдИ-рд░реАрдбрд░ рдЬреИрд╕реА рдИ-рдЗрдВрдХ рдбрд┐рд╡рд╛рдЗрд╕реЛрдВ рдкрд░ рдХреБрдЫ рдкрдврд╝рдиреЗ рдХреЗ рд▓рд┐рдП, рдЖрдкрдХреЛ рдлрд╝рд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░рдХреЗ рдЙрд╕реЗ рдЕрдкрдиреЗ рдбрд┐рд╡рд╛рдЗрд╕ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдирд╛ рд╣реЛрдЧрд╛. рдИ-рд░реАрдбрд░ рдкрд░ рдХрд╛рдо рдХрд░рдиреЗ рд╡рд╛рд▓реА рдлрд╝рд╛рдЗрд▓реЛрдВ рдХреЛ рдИ-рд░реАрдбрд░ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП, рд╕рд╣рд╛рдпрддрд╛ рдХреЗрдВрджреНрд░ рдХреЗ рдирд┐рд░реНрджреЗрд╢реЛрдВ рдХрд╛ рдкрд╛рд▓рди рдХрд░реЗрдВ.

Alberto Bosio рдХреА рдУрд░ рд╕реЗ рдЬрд╝реНрдпрд╛рджрд╛

рдорд┐рд▓рддреА-рдЬреБрд▓рддреА рдИ-рдмреБрдХ