Applied Mathematical Sciences: Partial Differential Equations

· Applied Mathematical Sciences 2. издање · Springer Science & Business Media
Е-књига
250
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

These Notes grew out of a course given by the author in 1952-53. Though the field of Partial Differential Equations has changed considerably since those days, particularly under the impact of methods taken from Functional Analysis, the author feels that the introductory material offered here still is basic for an understanding of the subject. It supplies the necessary intuitive foundation which motivates and anticipates abstract formulations of the questions and relates them to the description of natual phenomena. Added to this second corrected edition is a collection of problems and solutions, which illustrate and supplement the theories developed in the text. Fritz John New York September, 1974 vii TABLE OF CONTENTS Introd uction 1 CHAPrER I - THE SINGLE FIRST ORDER EQUATION 1. The linear and quasi-linear equations. 6 2. The general first order equation for a function of two variables. • • • • • • • • • 15 The general first order equation for a function 3. of n independent variables. • • • • • 37 CHAPrER II - THE CAUCHY PROBLEM FOR HIGHER ORDER EQUATIONS 1. Analytic functions of several real variables • 48 2. Formulation of the Cauchy problem. The notion of characteristics. • • • 54 3. The Cauchy problem for the general non-linear equation ••• 71 4. The Cauchy-Kowalewsky theorem. 76 CHAPTER III - SECOND ORDER EQUATIONS WITH CONSTANT COEFFICIENTS 1. Equations in two independent variables.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.