Applied Mathematical Sciences: Imperfect Bifurcation in Structures and Materials

· Applied Mathematical Sciences Issue #149 · Springer Nature
eBook
590
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

This book provides a modern static imperfect bifurcation theory applicable to bifurcation phenomena of physical and engineering problems and fills the gap between the mathematical theory and engineering practice.

Systematic methods based on asymptotic, probabilistic, and group theoretic standpoints are used to examine experimental and computational data from numerous examples, such as soil, sand, kaolin, honeycomb, and domes. For mathematicians, static bifurcation theory for finite-dimensional systems, as well as its applications for practical problems, is illuminated by numerous examples. Engineers may find this book, with its minimized mathematical formalism, to be a useful introduction to modern bifurcation theory.

This third edition strengthens group representation and group-theoretic bifurcation theory. Several large scale applications have been included in association with the progress of computational powers. Problems and answers have been provided.

Review of First Edition:

"The book is unique in considering the experimental identification of material-dependent bifurcations in structures such as sand, Kaolin (clay), soil and concrete shells. ... These are studied statistically. ... The book is an excellent source of practical applications for mathematicians working in this field. ... A short set of exercises at the end of each chapter makes the book more useful as a text. The book is well organized and quite readable for non-specialists."

Henry W. Haslach, Jr., Mathematical Reviews, 2003

About the author

Kiyohiro Ikeda is a Professor in the Department of Civil Engineering, Graduate School of Engineering at Tohoku University. Kazuo Murota is a Professor in the Department of Mathematical Informatics, Graduate School of Information Science and Technology at University of Tokyo.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.