Applied Mathematical Sciences: Imperfect Bifurcation in Structures and Materials

· Applied Mathematical Sciences Nummer 149 · Springer Nature
E-bog
590
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

This book provides a modern static imperfect bifurcation theory applicable to bifurcation phenomena of physical and engineering problems and fills the gap between the mathematical theory and engineering practice.

Systematic methods based on asymptotic, probabilistic, and group theoretic standpoints are used to examine experimental and computational data from numerous examples, such as soil, sand, kaolin, honeycomb, and domes. For mathematicians, static bifurcation theory for finite-dimensional systems, as well as its applications for practical problems, is illuminated by numerous examples. Engineers may find this book, with its minimized mathematical formalism, to be a useful introduction to modern bifurcation theory.

This third edition strengthens group representation and group-theoretic bifurcation theory. Several large scale applications have been included in association with the progress of computational powers. Problems and answers have been provided.

Review of First Edition:

"The book is unique in considering the experimental identification of material-dependent bifurcations in structures such as sand, Kaolin (clay), soil and concrete shells. ... These are studied statistically. ... The book is an excellent source of practical applications for mathematicians working in this field. ... A short set of exercises at the end of each chapter makes the book more useful as a text. The book is well organized and quite readable for non-specialists."

Henry W. Haslach, Jr., Mathematical Reviews, 2003

Om forfatteren

Kiyohiro Ikeda is a Professor in the Department of Civil Engineering, Graduate School of Engineering at Tohoku University. Kazuo Murota is a Professor in the Department of Mathematical Informatics, Graduate School of Information Science and Technology at University of Tokyo.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.