Applications of Graph Theory

· Institute of Mathematics
5,0
1 reseña
eBook
34
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Graph theory is becoming increasingly significant as it is applied to other areas of mathematics, science and technology. It is being actively used in fields as varied as biochemistry (genomics), electrical engineering (communication networks and coding theory), computer science (algorithms and computation) and operations research (scheduling). The powerful combinatorial methods found in graph theory have also been used to prove fundamental results in other areas of pure mathematics. This book, besides giving a general outlook of these facts, includes new graph theoretical proofs of Fermat’s Little Theorem and the Nielson-Schreier Theorem. New applications to DNA sequencing (the SNP assembly problem) and computer network security (worm propagation) using minimum vertex covers in graphs are discussed. We also show how to apply edge coloring and matching in graphs for scheduling (the timetabling problem) and vertex coloring in graphs for map coloring and the assignment of frequencies in GSM mobile phone networks. Finally, we revisit the classical problem of finding re-entrant knight’s tours on a chessboard using Hamiltonian circuits in graphs.

Valoraciones y reseñas

5,0
1 reseña

Acerca del autor

Ashay Dharwadker is the Distinguished Professor of Mathematics & Natural Sciences at the Institute of Mathematics, Gurgaon, India. He is the author of a dozen exquisitely illustrated books describing his fundamental contributions to combinatorics, graph theory, computer science and the foundations of physics.

Shariefuddin Pirzada is an Honorary Professor at the Institute of Mathematics, Gurgaon and a Professor at the Department of Mathematics, University of Kashmir, Srinagar.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.