Analytische Geometrie: Ausgabe 6

· Springer-Verlag
eBook
216
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Zusammen mit dem Band über Lineare Algebra kann dieses Buch als Begleittext zu einer der üblichen zweisemestrigen Anfängervorlesungen über "Lineare Algebra und Analytische Geometrie" dienen. Die Trennung in zwei Bände eröffnet dem Leser mannigfache Möglichkeiten, nach eigenem Geschmack das Studium der linearen Algebra durch geometrische Exkurse aufzulockern. Dabei wird man sich aus Zeit gründen auf eine Auswahl aus der analytischen Geometrie beschränken müssen. Um dies zu erleichtern, sind die drei Kapitel weitgehend unabhängig voneinander ge halten. Das zweite Kapitel ist ganz unabhängig, es benötigt keine Hilfsmittel aus den beiden anderen. Die Zusammenhänge zwischen affiner und projektiver Geometrie zu unter drücken, wäre jedoch widersinnig gewesen. An zwei schwierigen Stellen in der affinen Geometrie setzen wir Ergebnisse der projektiven Geometrie ein: Beim Beweis des Hauptsatzes über Kollineationen (1.3.4) und bei der Klassifikation von Quadriken (1.4.5 bis l.4.8). Die restlichen Abschnitte der affinen Geometrie hängen jedoch davon nicht ab. Schließlich sollte man als Motivation fUr die projektive Geometrie ein klein wenig affine Geometrie kennengelernt haben. Ob man sich mit der Einführung allgemeiner affiner Räume abgeben will oder nicht, ist eine Frage des Geschmacks. Vom handwerklichen Standpunkt kann man sich damit begnügen, Geometrie in einem Vektorraum zu betreiben. Einer der Gründe, warum der allgemeine Begriff hier doch ausführlich dargestellt wurde, war der, einen zukünftigen Lehrer ftir den Fall zu wappnen, daß er diesen Dingen einmal in Schul büchern begegnet.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.