An Introduction to Sparse Stochastic Processes

·
· Cambridge University Press
E-book
387
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

Providing a novel approach to sparsity, this comprehensive book presents the theory of stochastic processes that are ruled by linear stochastic differential equations, and that admit a parsimonious representation in a matched wavelet-like basis. Two key themes are the statistical property of infinite divisibility, which leads to two distinct types of behaviour - Gaussian and sparse - and the structural link between linear stochastic processes and spline functions, which is exploited to simplify the mathematical analysis. The core of the book is devoted to investigating sparse processes, including a complete description of their transform-domain statistics. The final part develops practical signal-processing algorithms that are based on these models, with special emphasis on biomedical image reconstruction. This is an ideal reference for graduate students and researchers with an interest in signal/image processing, compressed sensing, approximation theory, machine learning, or statistics.

Sobre o autor

Michael Unser is Professor and Director of EPFL's Biomedical Imaging Group, Switzerland. He is a member of the Swiss Academy of Engineering Sciences, a Fellow of EURASIP, and a Fellow of the IEEE.

Pouya D. Tafti is a data scientist currently residing in Germany, and a former member of the Biomedical Imaging Group at EPFL, where he conducted research on the theory and applications of probabilistic models for data.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.