Additively Manufactured Inconel 718: Microstructures and Mechanical Properties

· LinkÃķping Studies in Science and Technology. Licentiate Thesis āšŦāšŧāš§āš—āšĩ 1 · LinkÃķping University Electronic Press
3,0
2 āš„āšģāš•āšīāšŠāšŧāšĄ
āš›āšķāŧ‰āšĄāš­āšĩāššāšļāš
69
āŧœāŧ‰āšē
āššāŧāŧˆāŧ„āš”āŧ‰āšĒāšąāŧ‰āš‡āšĒāš·āš™āšāšēāš™āšˆāšąāš”āš­āšąāš™āš”āšąāšš āŧāšĨāš° āš„āšģāš•āšīāšŠāšŧāšĄ āšŠāšķāšāšŠāšēāŧ€āšžāšĩāŧˆāšĄāŧ€āš•āšĩāšĄ

āšāŧˆāš―āš§āšāšąāššāš›āšķāŧ‰āšĄ e-book āš™āšĩāŧ‰

Additive manufacturing (AM), also known as 3D printing, has gained significant interest in aerospace, energy, automotive and medical industries due to its capabilities of manufacturing components that are either prohibitively costly or impossible to manufacture by conventional processes. Among the various additive manufacturing processes for metallic components, electron beam melting (EBM) and selective laser melting (SLM) are two of the most widely used powder bed based processes, and have shown great potential for manufacturing high-end critical components, such as turbine blades and customized medical implants. The futures of the EBM and SLM are doubtlessly promising, but to fully realize their potentials there are still many challenges to overcome.

Inconel 718 (IN718) is a nickel-base superalloy and has impressive combination of good mechanical properties and low cost. Though IN718 is being mostly used as a turbine disk material now, the initial introduction of IN718 was to overcome the poor weldability of superalloys in 1960s, since sluggish precipitation of strengthening phases ?’/?’’ enables good resistance to strain-age cracking during welding or post weld heat treatment. Given the similarity between AM and welding processes, IN718 has been widely applied to the metallic AM field to facilitate the understandings of process-microstructure-property relationships.

The work presented in this licentiate thesis aims to better understand microstructures and mechanical properties EBM and SLM IN718, which have not been systematically investigated. Microstructures of EBM and SLM IN718 have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and correlated with the process conditions. Monotonic mechanical properties (e.g., Vickers microhardness and tensile properties) have also been measured and rationalized with regards to the microstructure evolutions before and after heat treatments.

For EBM IN718, the results show the microstructure is not homogeneous but dependant on the location in the components, and the anisotropic mechanical properties are probably attributed to alignment of porosities rather than texture. Post heat treatment can slightly increase the mechanical strength compared to the as-manufactured condition but does not alter the anisotropy. SLM IN718 shows significantly different microstructure and mechanical properties to EBM IN718. The as-manufactured SLM IN718 has very fine dendritic microstructure and Laves phases in the interdendrites, and is “work-hardened” by the residual strains and dislocations present in the material. Mechanical properties are different between horizontally and vertically built samples, and heat treatment can minimize this difference. Results from this licentiate thesis provide the basis for the further research on the cyclic mechanical properties of EBM and SLM IN718, which would be the focus of following phase of the Ph.D. research.

āšāšēāš™āšˆāšąāš”āš­āšąāš™āš”āšąāšš āŧāšĨāš° āš„āšģāš•āšīāšŠāšŧāšĄ

3,0
2 āš„āšģāš•āšīāšŠāšŧāšĄ

āŧƒāšŦāŧ‰āš„āš°āŧāš™āš™ e-book āš™āšĩāŧ‰

āššāš­āšāšžāš§āšāŧ€āšŪāšŧāšēāš§āŧˆāšēāš—āŧˆāšēāš™āš„āšīāš”āŧāš™āš§āŧƒāš”.

āš­āŧˆāšēāš™â€‹āš‚āŧāŧ‰â€‹āšĄāšđāš™â€‹āš‚āŧˆāšēāš§â€‹āšŠāšēāš™

āšŠāš°āšĄāšēāš”āŧ‚āšŸāš™ āŧāšĨāš° āŧāš—āšąāššāŧ€āšĨāšąāš”
āš•āšīāš”āš•āšąāŧ‰āš‡ āŧāš­āšąāšš Google Play Books āšŠāšģāšĨāšąāšš Android āŧāšĨāš° iPad/iPhone. āšĄāšąāš™āšŠāšīāŧ‰āš‡āš‚āŧāŧ‰āšĄāšđāš™āŧ‚āš”āšāš­āšąāš”āš•āš°āŧ‚āš™āšĄāšąāš”āšāšąāššāššāšąāš™āšŠāšĩāš‚āš­āš‡āš—āŧˆāšēāš™ āŧāšĨāš° āš­āš°āš™āšļāšāšēāš”āŧƒāšŦāŧ‰āš—āŧˆāšēāš™āš­āŧˆāšēāš™āš—āšēāš‡āš­āš­āš™āšĨāšēāš āšŦāšžāš· āŧāššāššāš­āš­āššāšĨāšēāšāŧ„āš”āŧ‰ āššāŧāŧˆāš§āŧˆāšēāš—āŧˆāšēāš™āšˆāš°āšĒāšđāŧˆāŧƒāšŠ.
āŧāšĨāšąāššāš—āšąāš­āšš āŧāšĨāš° āš„āš­āšĄāšžāšīāš§āŧ€āš•āšĩ
āš—āŧˆāšēāš™āšŠāšēāšĄāšēāš”āšŸāšąāš‡āš›āšķāŧ‰āšĄāšŠāš―āš‡āš—āšĩāŧˆāšŠāš·āŧ‰āŧƒāš™ Google Play āŧ‚āš”āšāŧƒāšŠāŧ‰āŧ‚āš›āšĢāŧāšāšĢāšĄāš—āŧˆāš­āš‡āŧ€āš§āšąāššāš‚āš­āš‡āš„āš­āšĄāšžāšīāš§āŧ€āš•āšĩāš‚āš­āš‡āš—āŧˆāšēāš™āŧ„āš”āŧ‰.
eReaders āŧāšĨāš°āš­āšļāš›āš°āšāš­āš™āš­āš·āŧˆāš™āŧ†
āŧ€āšžāš·āŧˆāš­āš­āŧˆāšēāš™āŧƒāš™āš­āšļāš›āš°āšāš­āš™ e-ink āŧ€āšŠāšąāŧˆāš™: Kobo eReader, āš—āŧˆāšēāš™āšˆāšģāŧ€āš›āšąāš™āš•āŧ‰āš­āš‡āš”āšēāš§āŧ‚āšŦāšžāš”āŧ„āšŸāšĨāŧŒ āŧāšĨāš° āŧ‚āš­āš™āšāŧ‰āšēāšāšĄāšąāš™āŧ„āš›āŧƒāšŠāŧˆāš­āšļāš›āš°āšāš­āš™āš‚āš­āš‡āš—āŧˆāšēāš™āšāŧˆāš­āš™. āš›āš°āš•āšīāššāšąāš”āš•āšēāšĄāš„āšģāŧāš™āš°āš™āšģāšĨāš°āš­āš―āš”āš‚āš­āš‡ āšŠāšđāš™āšŠāŧˆāš§āšāŧ€āšŦāšžāš·āš­ āŧ€āšžāš·āŧˆāš­āŧ‚āš­āš™āšāŧ‰āšēāšāŧ„āšŸāšĨāŧŒāŧ„āŧƒāšŠāŧˆ eReader āš—āšĩāŧˆāšŪāš­āš‡āšŪāšąāšš.