Abstract analytic number theory

┬╖ North-Holland Mathematical Library рдкреБрд╕реНрддрдХ 12 ┬╖ Newnes
рдИ-рдмреБрдХ
321
рдкреЗрдЬ
рдпреЛрдЧреНрдп
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ

рдЗрд╕ рдИ-рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

North-Holland Mathematical Library, Volume 12: Abstract Analytic Number Theory focuses on the approaches, methodologies, and principles of the abstract analytic number theory. The publication first deals with arithmetical semigroups, arithmetical functions, and enumeration problems. Discussions focus on special functions and additive arithmetical semigroups, enumeration and zeta functions in special cases, infinite sums and products, double series and products, integral domains and arithmetical semigroups, and categories satisfying theorems of the Krull-Schmidt type. The text then ponders on semigroups satisfying Axiom A, asymptotic enumeration and "statistical" properties of arithmetical functions, and abstract prime number theorem. Topics include asymptotic properties of prime-divisor functions, maximum and minimum orders of magnitude of certain functions, asymptotic enumeration in certain categories, distribution functions of prime-independent functions, and approximate average values of special arithmetical functions. The manuscript takes a look at arithmetical formations, additive arithmetical semigroups, and Fourier analysis of arithmetical functions, including Fourier theory of almost even functions, additive abstract prime number theorem, asymptotic average values and densities, and average values of arithmetical functions over a class. The book is a vital reference for researchers interested in the abstract analytic number theory.

рдЗрд╕ рдИ-рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдкрдарди рдЬрд╛рдирдХрд╛рд░реА

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИ рдСрдбрд┐рдпреЛ рдХрд┐рддрд╛рдмреЗрдВ рд╕реБрди рд╕рдХрддреЗ рд╣реИрдВ.
eReaders рдФрд░ рдЕрдиреНрдп рдбрд┐рд╡рд╛рдЗрд╕
Kobo рдИ-рд░реАрдбрд░ рдЬреИрд╕реА рдИ-рдЗрдВрдХ рдбрд┐рд╡рд╛рдЗрд╕реЛрдВ рдкрд░ рдХреБрдЫ рдкрдврд╝рдиреЗ рдХреЗ рд▓рд┐рдП, рдЖрдкрдХреЛ рдлрд╝рд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░рдХреЗ рдЙрд╕реЗ рдЕрдкрдиреЗ рдбрд┐рд╡рд╛рдЗрд╕ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдирд╛ рд╣реЛрдЧрд╛. рдИ-рд░реАрдбрд░ рдкрд░ рдХрд╛рдо рдХрд░рдиреЗ рд╡рд╛рд▓реА рдлрд╝рд╛рдЗрд▓реЛрдВ рдХреЛ рдИ-рд░реАрдбрд░ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП, рд╕рд╣рд╛рдпрддрд╛ рдХреЗрдВрджреНрд░ рдХреЗ рдирд┐рд░реНрджреЗрд╢реЛрдВ рдХрд╛ рдкрд╛рд▓рди рдХрд░реЗрдВ.

рд╕реАрд░реАрдЬрд╝ рдЬрд╛рд░реА рд░рдЦреЗрдВ

рдорд┐рд▓рддреА-рдЬреБрд▓рддреА рдИ-рдмреБрдХ