3-Manifolds

· AMS Chelsea Publishing Series Cartea 349 · American Mathematical Soc.
Carte electronică
195
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

A careful and systematic development of the theory of the topology of 3-manifolds, focusing on the critical role of the fundamental group in determining the topological structure of a 3-manifold ... self-contained ... one can learn the subject from it ... would be very appropriate as a text for an advanced graduate course or as a basis for a working seminar. --Mathematical Reviews For many years, John Hempel's book has been a standard text on the topology of 3-manifolds. Even though the field has grown tremendously, the book remains one of the best and most popular introductions to the subject. The theme of this book is the role of the fundamental group in determining the topology of a given 3-manifold. The essential ideas and techniques are covered in the first part of the book: Heegaard splittings, connected sums, the loop and sphere theorems, incompressible surfaces, free groups, and so on. Along the way, many useful and insightful results are proved, usually in full detail. Later chapters address more advanced topics, including Waldhausen's theorem on a class of 3-manifolds that is completely determined by its fundamental group. The book concludes with a list of problems that were unsolved at the time of publication. Hempel's book remains an ideal text to learn about the world of 3-manifolds. The prerequisites are few and are typical of a beginning graduate student. Exercises occur throughout the text.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.