3-Manifolds

· AMS Chelsea Publishing Series Boek 349 · American Mathematical Soc.
E-boek
195
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

A careful and systematic development of the theory of the topology of 3-manifolds, focusing on the critical role of the fundamental group in determining the topological structure of a 3-manifold ... self-contained ... one can learn the subject from it ... would be very appropriate as a text for an advanced graduate course or as a basis for a working seminar. --Mathematical Reviews For many years, John Hempel's book has been a standard text on the topology of 3-manifolds. Even though the field has grown tremendously, the book remains one of the best and most popular introductions to the subject. The theme of this book is the role of the fundamental group in determining the topology of a given 3-manifold. The essential ideas and techniques are covered in the first part of the book: Heegaard splittings, connected sums, the loop and sphere theorems, incompressible surfaces, free groups, and so on. Along the way, many useful and insightful results are proved, usually in full detail. Later chapters address more advanced topics, including Waldhausen's theorem on a class of 3-manifolds that is completely determined by its fundamental group. The book concludes with a list of problems that were unsolved at the time of publication. Hempel's book remains an ideal text to learn about the world of 3-manifolds. The prerequisites are few and are typical of a beginning graduate student. Exercises occur throughout the text.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.