Rete neurale artificiale: Costruire sistemi intelligenti per l'autonomia e l'adattamento robotico

· Scienza Della Robotica [Italian] 7 ବହି · Un Miliardo Di Ben Informato [Italian] · Italoଙ୍କ ଦ୍ବାରା AI-ନେରେଟେଡ (Google ତରଫରୁ)
ଅଡିଓବୁକ୍
7 ଘ. 13 ମି.
ଅସଂକ୍ଷିପ୍ତ ଅଟେ
ଯୋଗ୍ୟ
AI-ନେରେଟେଡ
ରେଟିଂ ଓ ସମୀକ୍ଷାଗୁଡ଼ିକୁ ଯାଞ୍ଚ କରାଯାଇନାହିଁ  ଅଧିକ ଜାଣନ୍ତୁ
30 ମି.ର ଏକ ନମୁନା ଚାହାଁନ୍ତି? ଯେ କୌଣସି ସମୟରେ, ଏପରିକି ଅଫଲାଇନ ଥିବା ସମୟରେ ମଧ୍ୟ ଶୁଣନ୍ତୁ। 
ଯୋଡ଼ନ୍ତୁ

ଏହି ଅଡିଓବୁକ୍ ବିଷୟରେ

1: Rete neurale artificiale: esplora le basi e l'ampio significato delle reti neurali.


2: Perceptron: comprendi i componenti fondamentali dei modelli di apprendimento a strato singolo.


3: Jürgen Schmidhuber: scopri la ricerca pionieristica alla base delle reti moderne.


4: Neuroevoluzione: esamina gli approcci genetici per ottimizzare le architetture neurali.


5: Rete neurale ricorrente: esamina le reti con memoria per dati sequenziali.


6: Rete neurale feedforward: analizza le reti in cui i dati si muovono in una sola direzione.


7: Perceptron multistrato: scopri le strutture a strati che migliorano la profondità della rete.


8: Rete neurale quantistica: scopri il potenziale dei modelli di apprendimento assistiti da quanti.


9: ADALINE: studia i neuroni lineari adattivi per il riconoscimento di pattern.


10: Rete di stato di eco: esplora i modelli di riserva dinamica per dati temporali.


11: Rete neurale spiking: comprendi i sistemi neurali ispirati alla biologia.


12: Reservoir computing: approfondisci le reti specializzate per l'analisi delle serie temporali.


13: Long shortterm memory: padroneggia le architetture progettate per conservare le informazioni.


14: Tipi di reti neurali artificiali: distingui tra vari modelli di rete.


15: Deep learning: afferra la profondità e la portata delle reti multistrato.


16: Learning rule: esplora i metodi che guidano l'addestramento dei modelli neurali.


17: Rete neurale convoluzionale: analizza le reti su misura per i dati delle immagini.


18: Problema del gradiente che svanisce: affronta le sfide nell'addestramento delle reti.


19: Reti neurali ricorrenti bidirezionali: scopri modelli che elaborano i dati in entrambe le direzioni.


20: Rete neurale residua: impara tecniche avanzate per ottimizzare l'apprendimento.


21: Storia delle reti neurali artificiali: traccia l'evoluzione di questo campo trasformativo.

ଲେଖକଙ୍କ ବିଷୟରେ

Fouad Sabry è l'ex Responsabile Regionale dello Sviluppo Commerciale per le Applicazioni di HP. Fouad ha conseguito la laurea triennale in Sistemi Informatici e Controllo Automatico nel 1996, una doppia laurea magistrale presso l'Università di Melbourne (UoM) in Australia, un Master in Business Administration (MBA) nel 2008 e un Master in Management in Information Technology (MMIT) nel 2010. Fouad vanta oltre 30 anni di esperienza nei settori dell'Information Technology e delle Telecomunicazioni, maturati in aziende locali, regionali e internazionali, come Vodafone e IBM. Fouad è entrato in HP nel 2013 e ha contribuito allo sviluppo del business in decine di mercati. Attualmente, Fouad è imprenditore, autore, futurista e fondatore dell'iniziativa One Billion Knowledge (1BK).

ଏହି ଅଡିଓବୁକର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ

ଆପଣ କଣ ଭାବୁଛନ୍ତି ତାହା ଆମକୁ ଜଣାନ୍ତୁ।

ଶୁଣିପାରୁଥିବା ତଥ୍ୟ

ସ୍ମାର୍ଟଫୋନ ଓ ଟାବଲେଟ
Google Play Books ଆପ୍କୁ, AndroidiPad/iPhone ପାଇଁ ଇନଷ୍ଟଲ୍ କରନ୍ତୁ। ଏହା ସ୍ଵଚାଳିତ ଭାବେ ଆପଣଙ୍କ ଆକାଉଣ୍ଟରେ ସିଙ୍କ ହୋ‍ଇଯିବ ଏବଂ ଆପଣ ଯେଉଁଠି ଥାଆନ୍ତୁ ନା କାହିଁକି ଆନଲାଇନ୍ କିମ୍ବା ଅଫଲାଇନ୍‍ରେ ପଢ଼ିବା ପାଇଁ ଅନୁମତି ଦେବ।
ଲାପଟପ ଓ କମ୍ପ୍ୟୁଟର
ନିଜର କମ୍ପ୍ୟୁଟର୍‍ରେ ଥିବା ୱେବ୍ ବ୍ରାଉଜର୍‍କୁ ବ୍ୟବହାର କରି Google Playରୁ କିଣିଥିବା ବହିଗୁଡ଼ିକୁ ଆପଣ ପଢ଼ିପାରିବେ।

ସିରିଜ୍ ଜାରି ରଖନ୍ତୁ

Fouad Sabry ଦ୍ୱାରା ଅଧିକ

ସମାନ ଅଡିଓବୁକ