Optimizing Large Language Models Practical Approaches and Applications of Quantization Technique

Anand Vemula · AI ບັນຍາຍໂດຍ Madison (ຈາກ Google)
ປຶ້ມສຽງ
1 ຊົ່ວໂມງ 51 ນາທີ
ສະບັບເຕັມ
ບັນຍາຍໂດຍ AI
ບໍ່ໄດ້ຢັ້ງຢືນການຈັດອັນດັບ ແລະ ຄຳຕິຊົມ ສຶກສາເພີ່ມເຕີມ
ຕ້ອງການຕົວຢ່າງ 11 ນາທີ ບໍ? ຟັງໄດ້ທຸກເວລາ, ເຖິງແມ່ນໃນເວລາອອບລາຍຢູ່ກໍຕາມ. 
ເພີ່ມ

ກ່ຽວກັບປຶ້ມອ່ານອອກສຽງ

 The book provides an in-depth understanding of quantization techniques and their impact on model efficiency, performance, and deployment.

The book starts with a foundational overview of quantization, explaining its significance in reducing the computational and memory requirements of LLMs. It delves into various quantization methods, including uniform and non-uniform quantization, per-layer and per-channel quantization, and hybrid approaches. Each technique is examined for its applicability and trade-offs, helping readers select the best method for their specific needs.

The guide further explores advanced topics such as quantization for edge devices and multi-lingual models. It contrasts dynamic and static quantization strategies and discusses emerging trends in the field. Practical examples, use cases, and case studies are provided to illustrate how these techniques are applied in real-world scenarios, including the quantization of popular models like GPT and BERT.

ກ່ຽວກັບຜູ້ຂຽນ

AI Evangelist with 27 years of IT experience

ໃຫ້ຄະແນນປຶ້ມສຽງນີ້

ບອກພວກເຮົາວ່າທ່ານຄິດແນວໃດ.

ຂໍ້ມູນການຟັງ

ສະມາດໂຟນ ແລະ ແທັບເລັດ
ຕິດຕັ້ງ ແອັບ Google Play Books ສຳລັບ Android ແລະ iPad/iPhone. ມັນຊິ້ງຂໍ້ມູນໂດຍອັດຕະໂນມັດກັບບັນຊີຂອງທ່ານ ແລະ ອະນຸຍາດໃຫ້ທ່ານອ່ານທາງອອນລາຍ ຫຼື ແບບອອບລາຍໄດ້ ບໍ່ວ່າທ່ານຈະຢູ່ໃສ.
ແລັບທັອບ ແລະ ຄອມພິວເຕີ
ທ່ານສາມາດອ່ານປຶ້ມທີ່ຊື້ຜ່ານ Google Play ໂດຍໃຊ້ໂປຣແກຣມທ່ອງເວັບຂອງຄອມພິວເຕີໄດ້.

ເພີ່ມເຕີມຈາກ Anand Vemula

ປຶ້ມອ່ານອອກສຽງທີ່ຄ້າຍຄືກັນ

ບັນຍາຍໂດຍ Madison