Nichtlineare Dimensionsreduzierung: Fortgeschrittene Techniken zur Verbesserung der Datendarstellung in Robotersystemen

· Robotikwissenschaft [German] 42-kitob · Eine Milliarde Sachkundig [German] · Gabriel tomonidan AI oʻqiydi (Googledan)
Audiokitob
6 soat 49 daqiqa
Toʻliq versiyasi
Yaroqli
AI oʻqiydi
Reytinglar va sharhlar tasdiqlanmagan  Batafsil
29 daqiqa namuna istaysizmi? Uni istalgan vaqt va hatto oflaynda ham tinglash mumkin. 
Qo‘shish

Bu audiokitob haqida

1: Nichtlineare Dimensionsreduktion: Erkunden Sie grundlegende Konzepte und die Bedeutung der Reduzierung hochdimensionaler Daten für eine einfachere Analyse.


2: Lineare Abbildung: Einführung in die Grundlagen der linearen Abbildung und ihre Rolle bei der Reduzierung der Datendimensionalität im maschinellen Lernen.


3: Support Vector Machine: Erfahren Sie, wie Support Vector Machines die Dimensionsreduktion bei Klassifizierungsaufgaben und Mustererkennung anwenden.


4: Hauptkomponentenanalyse: Tauchen Sie ein in die PCA-Technik zur Umwandlung von Daten in einen Satz linear unkorrelierter Variablen.


5: Isometrie: Untersuchen Sie, wie isometrische Techniken Abstände zwischen Punkten bewahren und gleichzeitig die Datendimensionen reduzieren.


6: Dimensionsreduktion: Verstehen Sie den breiteren Umfang der Dimensionsreduktion und ihre Anwendungen in verschiedenen Bereichen.


7: Semidefinite Einbettung: Studieren Sie semidefinite Programmierung und ihre Verbindung zu Methoden der Dimensionsreduktion.


8: Kernelmethode: Entdecken Sie die Leistungsfähigkeit von Kernelmethoden beim Umgang mit nichtlinearen Beziehungen bei der Datenreduktion.


9: Kernel-Hauptkomponentenanalyse: Erkunden Sie die Fähigkeit von KPCA, eine Dimensionsreduktion in einem hochdimensionalen Merkmalsraum durchzuführen.


10: Numerische Fortsetzung: Erfahren Sie, wie numerische Fortsetzungstechniken beim Verständnis hochdimensionaler Systeme helfen.


11: Spektrales Clustering: Verstehen Sie, wie spektrales Clustering Dimensionsreduktion nutzt, um ähnliche Datenpunkte zu gruppieren.


12: Isomap: Ein Blick auf Isomap, eine Technik, die mehrdimensionale Skalierung mit geodätischen Distanzen zur Dimensionsreduktion kombiniert.


13: Johnson-Lindenstrauss-Lemma: Tauchen Sie ein in die Mathematik des Johnson-Lindenstrauss-Lemmas, das sicherstellt, dass die Dimensionsreduktion geometrische Eigenschaften beibehält.


14: Lineares nichtlineares Poisson-Kaskadenmodell: Untersuchen Sie, wie dieses Modell lineare und nichtlineare Methoden in die Dimensionsreduktion integriert.


15: Mannigfaltigkeitsausrichtung: Erfahren Sie mehr über Mannigfaltigkeitsausrichtung und ihre Bedeutung bei der Ausrichtung von Daten aus verschiedenen Bereichen bei der Dimensionsreduktion.


16: Diffusionskarte: Verstehen Sie, wie Diffusionskarten den Diffusionsprozess zur Dimensionsreduzierung in komplexen Datensätzen verwenden.


17: Tdistributed Stochastic Neighbor Embedding: Erkunden Sie die Fähigkeit von tSNE, die Dimensionalität zu reduzieren und gleichzeitig lokale Strukturen in Daten beizubehalten.


18: Kernel-Embedding von Verteilungen: Untersuchen Sie, wie Kernel-Embedding eine Dimensionsreduzierung bei Verteilungen und nicht nur bei Datensätzen ermöglicht.


19: Zufallsprojektion: Ein praktischer Ansatz zur Dimensionsreduzierung, der auf Zufallsprojektionen für schnelle Berechnungen basiert.


20: Mannigfaltigkeitsregularisierung: Erfahren Sie mehr über Mannigfaltigkeitsregularisierungstechniken und ihre Auswirkungen auf das Lernen aus hochdimensionalen Daten.


21: Empirische dynamische Modellierung: Entdecken Sie, wie empirische dynamische Modellierung die Dimensionsreduzierung durch Zeitreihendatenanalyse unterstützt.

Muallif haqida

Fouad Sabry ist ehemaliger Regionalleiter der Geschäftsentwicklung für Anwendungen bei HP. Er schloss 1996 seinen Bachelor of Science in Computersystemen und Automatisierungstechnik ab und erwarb zwei Masterabschlüsse an der University of Melbourne (UoM) in Australien. 2008 erlangte er einen Master of Business Administration (MBA) und 2010 einen Master of Management in Information Technology (MMIT). Fouad verfügt über mehr als 30 Jahre Erfahrung in den Bereichen Informationstechnologie und Telekommunikation und arbeitete für lokale, regionale und internationale Unternehmen wie Vodafone und IBM. 2013 kam er zu HP und trug zur Geschäftsentwicklung in zahlreichen Märkten bei. Derzeit ist Fouad Unternehmer, Autor, Futurist und Gründer der Initiative One Billion Knowledge (1BK).

Bu audiokitobni baholash

Fikringizni bildiring.

Audiokitoblarni tinglash

Smartfonlar va planshetlar
Android va iPad/iPhone uchun mo‘ljallangan Google Play Kitoblar ilovasini o‘rnating. U hisobingiz bilan avtomatik tazrda sinxronlanadi va hatto oflayn rejimda ham kitob o‘qish imkonini beradi.
Noutbuklar va kompyuterlar
Google Play orqali sotib olingan kitoblarni brauzer yordamida o‘qishingiz mumkin.

Silsilani davom eting

Fouad Sabry – boshqa kitobllari

O‘xshash audiokitoblar