Nichtlineare Dimensionsreduzierung: Fortgeschrittene Techniken zur Verbesserung der Datendarstellung in Robotersystemen

· Robotikwissenschaft [German] Кніга 42 · Eine Milliarde Sachkundig [German] · Агучана голасам апавядальніка Gabriel з дапамогай штучнага інтэлекту (ад Google)
Аўдыякніга
6 гадз 49 хв
Поўнасцю
Падыходзячыя
Агучана з дапамогай штучнага інтэлекту
Ацэнкі і водгукі не спраўджаны  Даведацца больш
Хочаце атрымаць фрагмент працягласцю 29 хв? Слухайце ў любы час, нават па-за сеткай. 
Дадаць

Пра гэту аўдыякнігу

1: Nichtlineare Dimensionsreduktion: Erkunden Sie grundlegende Konzepte und die Bedeutung der Reduzierung hochdimensionaler Daten für eine einfachere Analyse.


2: Lineare Abbildung: Einführung in die Grundlagen der linearen Abbildung und ihre Rolle bei der Reduzierung der Datendimensionalität im maschinellen Lernen.


3: Support Vector Machine: Erfahren Sie, wie Support Vector Machines die Dimensionsreduktion bei Klassifizierungsaufgaben und Mustererkennung anwenden.


4: Hauptkomponentenanalyse: Tauchen Sie ein in die PCA-Technik zur Umwandlung von Daten in einen Satz linear unkorrelierter Variablen.


5: Isometrie: Untersuchen Sie, wie isometrische Techniken Abstände zwischen Punkten bewahren und gleichzeitig die Datendimensionen reduzieren.


6: Dimensionsreduktion: Verstehen Sie den breiteren Umfang der Dimensionsreduktion und ihre Anwendungen in verschiedenen Bereichen.


7: Semidefinite Einbettung: Studieren Sie semidefinite Programmierung und ihre Verbindung zu Methoden der Dimensionsreduktion.


8: Kernelmethode: Entdecken Sie die Leistungsfähigkeit von Kernelmethoden beim Umgang mit nichtlinearen Beziehungen bei der Datenreduktion.


9: Kernel-Hauptkomponentenanalyse: Erkunden Sie die Fähigkeit von KPCA, eine Dimensionsreduktion in einem hochdimensionalen Merkmalsraum durchzuführen.


10: Numerische Fortsetzung: Erfahren Sie, wie numerische Fortsetzungstechniken beim Verständnis hochdimensionaler Systeme helfen.


11: Spektrales Clustering: Verstehen Sie, wie spektrales Clustering Dimensionsreduktion nutzt, um ähnliche Datenpunkte zu gruppieren.


12: Isomap: Ein Blick auf Isomap, eine Technik, die mehrdimensionale Skalierung mit geodätischen Distanzen zur Dimensionsreduktion kombiniert.


13: Johnson-Lindenstrauss-Lemma: Tauchen Sie ein in die Mathematik des Johnson-Lindenstrauss-Lemmas, das sicherstellt, dass die Dimensionsreduktion geometrische Eigenschaften beibehält.


14: Lineares nichtlineares Poisson-Kaskadenmodell: Untersuchen Sie, wie dieses Modell lineare und nichtlineare Methoden in die Dimensionsreduktion integriert.


15: Mannigfaltigkeitsausrichtung: Erfahren Sie mehr über Mannigfaltigkeitsausrichtung und ihre Bedeutung bei der Ausrichtung von Daten aus verschiedenen Bereichen bei der Dimensionsreduktion.


16: Diffusionskarte: Verstehen Sie, wie Diffusionskarten den Diffusionsprozess zur Dimensionsreduzierung in komplexen Datensätzen verwenden.


17: Tdistributed Stochastic Neighbor Embedding: Erkunden Sie die Fähigkeit von tSNE, die Dimensionalität zu reduzieren und gleichzeitig lokale Strukturen in Daten beizubehalten.


18: Kernel-Embedding von Verteilungen: Untersuchen Sie, wie Kernel-Embedding eine Dimensionsreduzierung bei Verteilungen und nicht nur bei Datensätzen ermöglicht.


19: Zufallsprojektion: Ein praktischer Ansatz zur Dimensionsreduzierung, der auf Zufallsprojektionen für schnelle Berechnungen basiert.


20: Mannigfaltigkeitsregularisierung: Erfahren Sie mehr über Mannigfaltigkeitsregularisierungstechniken und ihre Auswirkungen auf das Lernen aus hochdimensionalen Daten.


21: Empirische dynamische Modellierung: Entdecken Sie, wie empirische dynamische Modellierung die Dimensionsreduzierung durch Zeitreihendatenanalyse unterstützt.

Звесткі пра аўтара

Fouad Sabry ist ehemaliger Regionalleiter der Geschäftsentwicklung für Anwendungen bei HP. Er schloss 1996 seinen Bachelor of Science in Computersystemen und Automatisierungstechnik ab und erwarb zwei Masterabschlüsse an der University of Melbourne (UoM) in Australien. 2008 erlangte er einen Master of Business Administration (MBA) und 2010 einen Master of Management in Information Technology (MMIT). Fouad verfügt über mehr als 30 Jahre Erfahrung in den Bereichen Informationstechnologie und Telekommunikation und arbeitete für lokale, regionale und internationale Unternehmen wie Vodafone und IBM. 2013 kam er zu HP und trug zur Geschäftsentwicklung in zahlreichen Märkten bei. Derzeit ist Fouad Unternehmer, Autor, Futurist und Gründer der Initiative One Billion Knowledge (1BK).

Ацаніце гэту аўдыякнігу

Падзяліцеся сваімі меркаваннямі.

Інфармацыя аб праслухоўванні

Смартфоны і планшэты
Усталюйце праграму "Кнігі Google Play" для Android і iPad/iPhone. Яна аўтаматычна сінхранізуецца з вашым уліковым запісам і дазваляе чытаць у інтэрнэце або па-за сеткай, дзе б вы ні былі.
Ноўтбукі і камп’ютары
Вы можаце чытаць кнігі, набытыя ў Google Play, у вэб-браўзеры свайго камп’ютара.

Працяг серыі

Яшчэ ад Fouad Sabry

Падобныя аўдыякнігі