Markov Decision Process: Fundamentals and Applications

┬╖ Artificial Intelligence рокрпБродрпНродроХроорпН 103 ┬╖ One Billion Knowledgeable ┬╖ Googleро│рпИроЪрпН роЪрпЗро░рпНроирпНрод Mason AI роорпВро▓роорпН ро╡ро┐ро╡ро░ро┐родрпНродрпБро│рпНро│ро╛ро░рпН
роЖроЯро┐ропрпЛ рокрпБродрпНродроХроорпН
2 роо 54 роиро┐
роЪрпБро░рпБроХрпНроХрокрпНрокроЯро╛родродрпБ
родроХрпБродро┐ропро╛ройродрпБ
AIропро╛ро▓рпН рокроЯро┐роХрпНроХрокрпНрокроЯрпНроЯродрпБ
ро░рпЗроЯрпНроЯро┐роЩрпНроХрпБроХро│рпБроорпН роХро░рпБродрпНродрпБроХро│рпБроорпН роЪро░ро┐рокро╛ро░рпНроХрпНроХрокрпНрокроЯрпБро╡родро┐ро▓рпНро▓рпИ┬ароорпЗро▓рпБроорпН роЕро▒ро┐роХ
17 роиро┐ рооро╛родро┐ро░ро┐ ро╡рпЗрогрпНроЯрпБрооро╛? роОроирпНрод роирпЗро░родрпНродро┐ро▓рпБроорпН роЖроГрокрпНро▓рпИройро┐ро▓рпБроорпН роХрпЗроЯрпНроХро▓ро╛роорпН.┬а
роЪрпЗро░рпН

роЗроирпНрод роЖроЯро┐ропрпЛ рокрпБродрпНродроХродрпНродрпИрокрпН рокро▒рпНро▒ро┐

What Is Markov Decision Process


A discrete-time stochastic control process is referred to as a Markov decision process (MDP) in the field of mathematics. It offers a mathematical framework for modeling decision making in scenarios in which the outcomes are partially controlled by a decision maker and partly determined by random chance. The study of optimization issues that can be handled by dynamic programming lends itself well to the use of MDPs. At the very least, MDPs were recognized to exist in the 1950s. Ronald Howard's book, published in 1960 and titled Dynamic Programming and Markov Processes, is credited for initiating a core body of study on Markov decision processes. They have applications in a wide variety of fields, including as robotics, automatic control, economics, and manufacturing, among others. Because Markov decision processes are an extension of Markov chains, the Russian mathematician Andrey Markov is where the term "Markov decision processes" (MDPs) originated.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Markov decision process


Chapter 2: Markov chain


Chapter 3: Reinforcement learning


Chapter 4: Bellman equation


Chapter 5: Admissible decision rule


Chapter 6: Partially observable Markov decision process


Chapter 7: Temporal difference learning


Chapter 8: Multi-armed bandit


Chapter 9: Optimal stopping


Chapter 10: Metropolis-Hastings algorithm


(II) Answering the public top questions about markov decision process.


(III) Real world examples for the usage of markov decision process in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of markov decision process' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of markov decision process.


What is Artificial Intelligence Series


The artificial intelligence book series provides comprehensive coverage in over 200 topics. Each ebook covers a specific Artificial Intelligence topic in depth, written by experts in the field. The series aims to give readers a thorough understanding of the concepts, techniques, history and applications of artificial intelligence. Topics covered include machine learning, deep learning, neural networks, computer vision, natural language processing, robotics, ethics and more. The ebooks are written for professionals, students, and anyone interested in learning about the latest developments in this rapidly advancing field.
The artificial intelligence book series provides an in-depth yet accessible exploration, from the fundamental concepts to the state-of-the-art research. With over 200 volumes, readers gain a thorough grounding in all aspects of Artificial Intelligence. The ebooks are designed to build knowledge systematically, with later volumes building on the foundations laid by earlier ones. This comprehensive series is an indispensable resource for anyone seeking to develop expertise in artificial intelligence.

роЖроЪро┐ро░ро┐ропро░рпН роХрпБро▒ро┐рокрпНрокрпБ

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual masterтАЩs degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

роЗроирпНрод роЖроЯро┐ропрпЛ рокрпБродрпНродроХродрпНродрпИ роородро┐рокрпНрокро┐роЯрпБроХ

роЙроЩрпНроХро│рпН роХро░рпБродрпНродрпИрокрпН рокроХро┐ро░ро╡рпБроорпН.

роХрпЗроЯрпНроЯро▓рпН родроХро╡ро▓рпНроХро│рпН

ро╕рпНрооро╛ро░рпНроЯрпНроГрокрпЛройрпНроХро│рпН рооро▒рпНро▒рпБроорпН роЯрпЗрокрпНро▓рпЖроЯрпНроХро│рпН
Android рооро▒рпНро▒рпБроорпН iPad/iPhoneроХрпНроХро╛рой Google Play рокрпБроХрпНро╕рпН роЖрокрпНро╕рпИ роиро┐ро▒рпБро╡рпБроорпН. роЗродрпБ родро╛ройро╛роХро╡рпЗ роЙроЩрпНроХро│рпН роХрогроХрпНроХрпБроЯройрпН роТродрпНродро┐роЪрпИроХрпНроХрпБроорпН рооро▒рпНро▒рпБроорпН роОроЩрпНроХро┐ро░рпБроирпНродро╛ро▓рпБроорпН роЖройрпНро▓рпИройро┐ро▓рпН роЕро▓рпНро▓родрпБ роЖроГрокрпНро▓рпИройро┐ро▓рпН рокроЯро┐роХрпНроХ роЕройрпБроородро┐роХрпНроХрпБроорпН.
ро▓рпЗрокрпНроЯро╛рокрпНроХро│рпН рооро▒рпНро▒рпБроорпН роХроорпНрокрпНропрпВроЯрпНроЯро░рпНроХро│рпН
Google Playропро┐ро▓рпН ро╡ро╛роЩрпНроХро┐роп рокрпБродрпНродроХроЩрпНроХро│рпИ роХроорпНрокрпНропрпВроЯрпНроЯро░ро┐ройрпН роЗрогрпИроп роЙро▓ро╛ро╡ро┐ропрпИрокрпН рокропройрпНрокроЯрпБродрпНродро┐ рокроЯро┐роХрпНроХро▓ро╛роорпН.

родрпКроЯро░рпИ ро╡ро░ро┐роЪрпИрокрпНрокроЯрпБродрпНродрпБродро▓рпН

роорпЗро▓рпБроорпН Fouad Sabry роОро┤рпБродро┐ропро╡рпИ

роЗродрпЗ рокрпЛройрпНро▒ роЖроЯро┐ропрпЛ рокрпБродрпНродроХроЩрпНроХро│рпН