Evolutionary Robotics: intelligent systems and adaptive behavior in autonomous machines

One Billion Knowledgeable ┬╖ рдПрдЖрдИ рдХреА рдорджрдж рд╕реЗ Google рдХреЗ рдЬрдирд░реЗрдЯ рдХрд┐рдП рдЧрдП Maxwell рдХреА рдЖрд╡рд╛рдЬрд╝ рдореЗрдВ рдСрдбрд┐рдпреЛрдмреБрдХ
рдСрдбрд┐рдпреЛ рдмреБрдХ
2рдШрдВрдЯрд╛ 59 рдорд┐рдирдЯ
рдЬрд╝реНрдпрд╛рджрд╛ рд╢рдмреНрджреЛрдВ рдореЗрдВ
рдпреЛрдЧреНрдп
рдПрдЖрдИ рдХреА рдорджрдж рд╕реЗ рдмреЛрд▓рдХрд░ рд╕реБрдирд╛рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ
рдХреНрдпрд╛ 17 рдорд┐рдирдЯ рдХреЗ рд▓рд┐рдП рдЖрдЬрд╝рдорд╛рдиреЗ рдореЗрдВ рдЖрдкрдХреА рджрд┐рд▓рдЪрд╕реНрдкреА рд╣реИ? рдХрднреА рднреА рд╕реБрдиреЗрдВ, рдЪрд╛рд╣реЗ рдЖрдк рдСрдлрд╝рд▓рд╛рдЗрди рд╣реА рдХреНрдпреЛрдВ рди рд╣реЛрдВ┬а
рдЬреЛрдбрд╝реЗрдВ

рдЗрд╕ рдСрдбрд┐рдпреЛ рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

1: Evolutionary robotics: Introduces the core principles and evolution of autonomous robotic systems, emphasizing how robots can evolve through trial and error, similar to natural selection.


2: Evolutionary computation: Explains the computational techniques inspired by evolutionary biology, such as genetic algorithms, used to solve complex optimization problems in robotics.


3: Neuroevolution of augmenting topologies: Discusses a groundbreaking approach where neural networks evolve, including both structure and weights, to optimize robotic performance.


4: Neuroevolution: Explores the process of evolving artificial neural networks to enhance the capabilities of robots, focusing on their learning and adaptability.


5: Evolvable hardware: Delivers an overview of hardware systems that evolve in response to changing environmental conditions, bringing evolutionary concepts into physical robotic systems.


6: Sbot mobile robot: Examines the Sbot mobile robot, a key example of how evolutionary robotics techniques have been applied to realworld robotic platforms.


7: Dario Floreano: Highlights the contributions of Dario Floreano, a leading researcher in evolutionary robotics, whose work has significantly shaped the field.


8: Inman Harvey: Explores the research of Inman Harvey and his innovative approaches in the integration of evolutionary algorithms with robotic systems.


9: Phil Husbands: Focuses on the work of Phil Husbands in the area of autonomous robot behavior and his contributions to the application of evolutionary methods in robotics.


10: Stefano Nolfi: Investigates Stefano Nolfi's contributions to neuroevolution and his work on creating robots that learn and evolve in dynamic environments.


11: Neurorobotics: Covers the exciting field of neurorobotics, where robotics and neuroscience converge to develop robots that can mimic biological intelligence.


12: Artificial development: Describes the emerging field of artificial development, where evolutionary and developmental principles are applied to create more complex, adaptive robotic systems.


13: HyperNEAT: Introduces the HyperNEAT framework, an advanced method for evolving neural networks that generate complex robotic behaviors and structures.


14: Morphogenetic robotics: Focuses on morphogenetic robotics, where robots selforganize and adapt their physical forms through evolutionary processes.


15: Evolutionary developmental robotics: Examines how combining evolutionary algorithms with developmental robotics leads to the creation of robots that grow and learn over time.


16: Dave Cliff (computer scientist): Discusses the work of Dave Cliff, whose research in artificial life and evolutionary algorithms has influenced the development of adaptive robots.


17: Artificial life: Explores the relationship between artificial life and robotics, discussing how creating lifelike behavior in robots can lead to more intelligent systems.


18: Jordan Pollack: Highlights Jordan PollackтАЩs work in artificial evolution, particularly in relation to developing systems that mimic natural processes to improve robotic performance.


19: Sabine Hauert: Focuses on Sabine HauertтАЩs contributions to multirobot systems and how evolutionary principles can improve collaborative robot behavior.


20: Pavan Ramdya: Explores the work of Pavan Ramdya, whose research in robotics and neurobiology integrates the study of movement and behavior in autonomous robots.


21: Genetic programming: Concludes with a look at genetic programming, a method used to evolve programs that control robot behavior, facilitating automation in complex tasks.

рдЗрд╕ рдСрдбрд┐рдпреЛ рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдЬрд╛рдирдХрд╛рд░реА рдХреЛ рд╕реБрдирдирд╛

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНтАНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИрдВ рдкреБрд╕реНтАНрддрдХреЗрдВ рдкрдврд╝ рд╕рдХрддреЗ рд╣реИрдВ.

Fouad Sabry рдХреА рдУрд░ рд╕реЗ рдЬрд╝реНрдпрд╛рджрд╛

рдорд┐рд▓рддреА-рдЬреБрд▓рддреА рдСрдбрд┐рдпреЛрдмреБрдХ

Maxwell рдХреА рдЖрд╡рд╛рдЬрд╝ рдореЗрдВ