Direct Linear Transformation: Practical Applications and Techniques in Computer Vision

┬╖ Computer Vision рдкреБрд╕реНрддрдХ 42 ┬╖ One Billion Knowledgeable ┬╖ рдПрдЖрдИ рдХреА рдорджрдж рд╕реЗ Google рдХреЗ рдЬрдирд░реЗрдЯ рдХрд┐рдП рдЧрдП Maxwell рдХреА рдЖрд╡рд╛рдЬрд╝ рдореЗрдВ рдСрдбрд┐рдпреЛрдмреБрдХ
рдСрдбрд┐рдпреЛ рдмреБрдХ
3рдШрдВрдЯрд╛ 8 рдорд┐рдирдЯ
рдЬрд╝реНрдпрд╛рджрд╛ рд╢рдмреНрджреЛрдВ рдореЗрдВ
рдпреЛрдЧреНрдп
рдПрдЖрдИ рдХреА рдорджрдж рд╕реЗ рдмреЛрд▓рдХрд░ рд╕реБрдирд╛рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ
рдХреНрдпрд╛ 18 рдорд┐рдирдЯ рдХреЗ рд▓рд┐рдП рдЖрдЬрд╝рдорд╛рдиреЗ рдореЗрдВ рдЖрдкрдХреА рджрд┐рд▓рдЪрд╕реНрдкреА рд╣реИ? рдХрднреА рднреА рд╕реБрдиреЗрдВ, рдЪрд╛рд╣реЗ рдЖрдк рдСрдлрд╝рд▓рд╛рдЗрди рд╣реА рдХреНрдпреЛрдВ рди рд╣реЛрдВ┬а
рдЬреЛрдбрд╝реЗрдВ

рдЗрд╕ рдСрдбрд┐рдпреЛ рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

What is Direct Linear Transformation


Direct linear transformation, also known as DLT, is an algorithm that solves a set of variables by using a set of similarity relations as the working set. In the field of projective geometry, this kind of relation is encountered quite frequently. Examples that are applicable to real-world situations include homographies and the relationship between three-dimensional points in a scene and their projection onto the image plane of a pinhole camera.


How you will benefit


(I) Insights, and validations about the following topics:


Chapter 1: Direct linear transformation


Chapter 2: Linear map


Chapter 3: Linear subspace


Chapter 4: Cholesky decomposition


Chapter 5: Invertible matrix


Chapter 6: Quadratic form


Chapter 7: Homogeneous function


Chapter 8: Kernel (linear algebra)


Chapter 9: Pl├╝cker coordinates


Chapter 10: TP model transformation in control theory


(II) Answering the public top questions about direct linear transformation.


(III) Real world examples for the usage of direct linear transformation in many fields.


Who this book is for


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Direct Linear Transformation.

рд▓реЗрдЦрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual masterтАЩs degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

рдЗрд╕ рдСрдбрд┐рдпреЛ рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдЬрд╛рдирдХрд╛рд░реА рдХреЛ рд╕реБрдирдирд╛

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНтАНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИрдВ рдкреБрд╕реНтАНрддрдХреЗрдВ рдкрдврд╝ рд╕рдХрддреЗ рд╣реИрдВ.

рд╕реАрд░реАрдЬрд╝ рдЬрд╛рд░реА рд░рдЦреЗрдВ

Fouad Sabry рдХреА рдУрд░ рд╕реЗ рдЬрд╝реНрдпрд╛рджрд╛

рдорд┐рд▓рддреА-рдЬреБрд▓рддреА рдСрдбрд┐рдпреЛрдмреБрдХ