Dimensionsreduzierung: Fortschritte in der Datenverarbeitung für intelligente Systeme

· Robotikwissenschaft [German] Книга 26 · Eine Milliarde Sachkundig [German] · Озвучення за допомогою ШІ: Gabriel (від Google)
Аудіокнига
8 год
Повна
Можна додати
Озвучено за допомогою ШІ
Google не перевіряє оцінки й відгуки. Докладніше.
Хочете отримати зразок на 29 хв? Слухайте будь-коли, навіть не в мережі. 
Додати

Про цю аудіокнигу

1: Dimensionsreduktion: Stellt das Konzept und die Notwendigkeit der Reduzierung der Komplexität hochdimensionaler Daten in der Robotik vor.


2: Hauptkomponentenanalyse: Erläutert PCA als wichtige lineare Technik zur Merkmalsextraktion und Datenkomprimierung.


3: Nichtlineare Dimensionsreduktion: Erforscht nichtlineare Techniken zur Erfassung komplexer Datenstrukturen in der Robotik.


4: Eigenface: Behandelt die Verwendung von Eigenfaces zur Gesichtserkennung in der Robotik und demonstriert eine reale Anwendung der Dimensionsreduktion.


5: Empirische orthogonale Funktionen: Beschreibt eine Methode zur Darstellung von Daten auf eine Weise, die wichtige Merkmale für Robotersysteme erfasst.


6: Semidefinite Einbettung: Stellt diese Technik zur Erhaltung von Datenbeziehungen bei gleichzeitiger Reduzierung der Dimensionalität vor, wodurch die Verarbeitung von Roboterdaten verbessert wird.


7: Lineare Diskriminanzanalyse: Erklärt, wie LDA bei Klassifizierungsaufgaben hilft, indem es sich auf die Klassentrennbarkeit in reduzierten Daten konzentriert.


8: Nichtnegative Matrixfaktorisierung: Beschreibt, wie NMF dabei hilft, teilebasierte Darstellungen aus Daten zu extrahieren, insbesondere für die Robotik.


9: Kernel-Hauptkomponentenanalyse: Erweitert PCA mit Kernelmethoden zur Verarbeitung nichtlinearer Daten, die für Robotiksysteme mit komplexen Eingaben von entscheidender Bedeutung sind.


10: Shogun (Toolbox): Hebt die Shogun-Toolbox für maschinelles Lernen hervor, die Methoden zur Dimensionsreduzierung für Robotikanwendungen enthält.


11: Spektrales Clustering: Behandelt diese Technik zum Clustering hochdimensionaler Daten, eine wesentliche Aufgabe bei der Wahrnehmung und dem Verständnis von Robotik.


12: Isomap: Bespricht Isomap, eine Methode zur nichtlinearen Dimensionsreduzierung, und ihre Auswirkungen auf die Verbesserung von Robotikmodellen.


13: Hauptkomponentenregression: Verbindet PCA mit Regression, um die Datendimensionalität zu reduzieren und prädiktive Modelle in der Robotik zu verbessern.


14: Multilineares Subspace-Lernen: Stellt diese fortschrittliche Methode zur Verarbeitung multidimensionaler Daten vor, die die Roboterleistung steigert.


15: Mlpy: Detaillierte Beschreibung der Mlpy-Bibliothek für maschinelles Lernen, die Tools zur Dimensionsreduzierung in Robotersystemen zeigt.


16: Diffusionskarte: Konzentriert sich auf die Diffusionskartentechnik zur Dimensionsreduzierung und ihre Anwendung in der Robotik.


17: Feature-Learning: Erforscht das Konzept des Feature-Learnings und seine Bedeutung für die Verbesserung der Dateninterpretation von Robotersystemen.


18: Kernel-Adaptivfilter: Erläutert diese Filtertechnik zur Anpassung von Modellen an dynamische Daten, wodurch die Entscheidungsfindung von Robotern in Echtzeit verbessert wird.


19: Zufallsprojektion: Bietet Einblicke, wie Zufallsprojektionstechniken die Dimensionsreduzierung für große Datensätze in der Robotik beschleunigen können.


20: Feature-Engineering: Stellt den Prozess des Entwerfens von Features vor, die Robotern helfen, ihre Umgebung besser zu verstehen und mit ihr zu interagieren.


21: Multivariate Normalverteilung: Schließt mit einer Erkundung dieses statistischen Tools ab, das in der Robotik zum Umgang mit Unsicherheit und zur Datenmodellierung verwendet wird.

Про автора

Fouad Sabry ist ehemaliger Regionalleiter der Geschäftsentwicklung für Anwendungen bei HP. Er schloss 1996 seinen Bachelor of Science in Computersystemen und Automatisierungstechnik ab und erwarb zwei Masterabschlüsse an der University of Melbourne (UoM) in Australien. 2008 erlangte er einen Master of Business Administration (MBA) und 2010 einen Master of Management in Information Technology (MMIT). Fouad verfügt über mehr als 30 Jahre Erfahrung in den Bereichen Informationstechnologie und Telekommunikation und arbeitete für lokale, regionale und internationale Unternehmen wie Vodafone und IBM. 2013 kam er zu HP und trug zur Geschäftsentwicklung in zahlreichen Märkten bei. Derzeit ist Fouad Unternehmer, Autor, Futurist und Gründer der Initiative One Billion Knowledge (1BK).

Оцініть цю аудіокнигу

Повідомте нас про свої враження.

Інформація щодо прослуховування

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Придбані в Google Play книги можна читати за допомогою веб-переглядача вашого комп’ютера.

Читайте серію далі

Ще від автора Fouad Sabry

Схожі аудіокниги