Dimensionsreduzierung: Fortschritte in der Datenverarbeitung für intelligente Systeme

· Robotikwissenschaft [German] Βιβλίο 26 · Eine Milliarde Sachkundig [German] · Αφήγηση AI από Gabriel (από την Google)
Ηχητικό βιβλίο
8 ώ.
Πλήρης
Κατάλληλο
Αφήγηση από AI
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα
Θέλετε ένα δείγμα διάρκειας 29 λ.; Μπορείτε να το ακούσετε οποιαδήποτε στιγμή, ακόμα και εκτός σύνδεσης. 
Προσθήκη

Σχετικά με το ηχητικό βιβλίο

1: Dimensionsreduktion: Stellt das Konzept und die Notwendigkeit der Reduzierung der Komplexität hochdimensionaler Daten in der Robotik vor.


2: Hauptkomponentenanalyse: Erläutert PCA als wichtige lineare Technik zur Merkmalsextraktion und Datenkomprimierung.


3: Nichtlineare Dimensionsreduktion: Erforscht nichtlineare Techniken zur Erfassung komplexer Datenstrukturen in der Robotik.


4: Eigenface: Behandelt die Verwendung von Eigenfaces zur Gesichtserkennung in der Robotik und demonstriert eine reale Anwendung der Dimensionsreduktion.


5: Empirische orthogonale Funktionen: Beschreibt eine Methode zur Darstellung von Daten auf eine Weise, die wichtige Merkmale für Robotersysteme erfasst.


6: Semidefinite Einbettung: Stellt diese Technik zur Erhaltung von Datenbeziehungen bei gleichzeitiger Reduzierung der Dimensionalität vor, wodurch die Verarbeitung von Roboterdaten verbessert wird.


7: Lineare Diskriminanzanalyse: Erklärt, wie LDA bei Klassifizierungsaufgaben hilft, indem es sich auf die Klassentrennbarkeit in reduzierten Daten konzentriert.


8: Nichtnegative Matrixfaktorisierung: Beschreibt, wie NMF dabei hilft, teilebasierte Darstellungen aus Daten zu extrahieren, insbesondere für die Robotik.


9: Kernel-Hauptkomponentenanalyse: Erweitert PCA mit Kernelmethoden zur Verarbeitung nichtlinearer Daten, die für Robotiksysteme mit komplexen Eingaben von entscheidender Bedeutung sind.


10: Shogun (Toolbox): Hebt die Shogun-Toolbox für maschinelles Lernen hervor, die Methoden zur Dimensionsreduzierung für Robotikanwendungen enthält.


11: Spektrales Clustering: Behandelt diese Technik zum Clustering hochdimensionaler Daten, eine wesentliche Aufgabe bei der Wahrnehmung und dem Verständnis von Robotik.


12: Isomap: Bespricht Isomap, eine Methode zur nichtlinearen Dimensionsreduzierung, und ihre Auswirkungen auf die Verbesserung von Robotikmodellen.


13: Hauptkomponentenregression: Verbindet PCA mit Regression, um die Datendimensionalität zu reduzieren und prädiktive Modelle in der Robotik zu verbessern.


14: Multilineares Subspace-Lernen: Stellt diese fortschrittliche Methode zur Verarbeitung multidimensionaler Daten vor, die die Roboterleistung steigert.


15: Mlpy: Detaillierte Beschreibung der Mlpy-Bibliothek für maschinelles Lernen, die Tools zur Dimensionsreduzierung in Robotersystemen zeigt.


16: Diffusionskarte: Konzentriert sich auf die Diffusionskartentechnik zur Dimensionsreduzierung und ihre Anwendung in der Robotik.


17: Feature-Learning: Erforscht das Konzept des Feature-Learnings und seine Bedeutung für die Verbesserung der Dateninterpretation von Robotersystemen.


18: Kernel-Adaptivfilter: Erläutert diese Filtertechnik zur Anpassung von Modellen an dynamische Daten, wodurch die Entscheidungsfindung von Robotern in Echtzeit verbessert wird.


19: Zufallsprojektion: Bietet Einblicke, wie Zufallsprojektionstechniken die Dimensionsreduzierung für große Datensätze in der Robotik beschleunigen können.


20: Feature-Engineering: Stellt den Prozess des Entwerfens von Features vor, die Robotern helfen, ihre Umgebung besser zu verstehen und mit ihr zu interagieren.


21: Multivariate Normalverteilung: Schließt mit einer Erkundung dieses statistischen Tools ab, das in der Robotik zum Umgang mit Unsicherheit und zur Datenmodellierung verwendet wird.

Σχετικά με τον συγγραφέα

Fouad Sabry ist ehemaliger Regionalleiter der Geschäftsentwicklung für Anwendungen bei HP. Er schloss 1996 seinen Bachelor of Science in Computersystemen und Automatisierungstechnik ab und erwarb zwei Masterabschlüsse an der University of Melbourne (UoM) in Australien. 2008 erlangte er einen Master of Business Administration (MBA) und 2010 einen Master of Management in Information Technology (MMIT). Fouad verfügt über mehr als 30 Jahre Erfahrung in den Bereichen Informationstechnologie und Telekommunikation und arbeitete für lokale, regionale und internationale Unternehmen wie Vodafone und IBM. 2013 kam er zu HP und trug zur Geschäftsentwicklung in zahlreichen Märkten bei. Derzeit ist Fouad Unternehmer, Autor, Futurist und Gründer der Initiative One Billion Knowledge (1BK).

Αξιολογήστε αυτό το ηχητικό βιβλίο

Πείτε μας τη γνώμη σας.

Ακρόαση πληροφοριών

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να διαβάσετε βιβλία που έχετε αγοράσει από το Google Play χρησιμοποιώντας το πρόγραμμα περιήγησης του υπολογιστή σας.

Συνεχίστε τη σειρά

Περισσότερα από τον χρήστη Fouad Sabry

Παρόμοια ηχητικά βιβλία