Dimensionality Reduction: Advancements in data processing for intelligent systems

ยท Robotics Science เจ•เจฟเจคเจพเจฌ 26 ยท One Billion Knowledgeable ยท AI เจฆเฉ€ เจฎเจฆเจฆ เจจเจพเจฒ Maxwell เจฆเฉ€ เจ…เจตเจพเฉ› เจตเจฟเฉฑเจš เจ†เจกเฉ€เจ“-เจ•เจฟเจคเจพเจฌ (Google เจตเฉฑเจฒเฉ‹เจ‚)
เจ†เจกเฉ€เจ“-เจ•เจฟเจคเจพเจฌ
7 เจ˜เฉฐเจŸเฉ‡ 20 เจฎเจฟเฉฐเจŸ
เจ…เจธเฉฐเจ–เจฟเจชเจค
เจฏเฉ‹เจ—
AI เจตเฉฑเจฒเฉ‹เจ‚ เจธเฉเจฃเจพเจˆ เจ—เจˆ
เจฐเฉ‡เจŸเจฟเฉฐเจ—เจพเจ‚ เจ…เจคเฉ‡ เจธเจฎเฉ€เจ–เจฟเจ†เจตเจพเจ‚ เจฆเฉ€ เจชเฉเจธเจผเจŸเฉ€ เจจเจนเฉ€เจ‚ เจ•เฉ€เจคเฉ€ เจ—เจˆ เจนเฉˆ ย เจนเฉ‹เจฐ เจœเจพเจฃเฉ‹
เจ•เฉ€ 30 เจฎเจฟเฉฐเจŸ เจจเจฎเฉ‚เจจเจพ เจšเจพเจนเฉเฉฐเจฆเฉ‡ เจนเฉ‹? เจ•เจฆเฉ‡ เจตเฉ€ เจธเฉเจฃเฉ‹, เจ†เจซเจผเจฒเจพเจˆเจจ เจนเฉ‹เจฃ เจตเฉ‡เจฒเฉ‡ เจตเฉ€เฅคย 
เจถเจพเจฎเจฒ เจ•เจฐเฉ‹

เจ‡เจธ เจ†เจกเฉ€เจ“-เจ•เจฟเจคเจพเจฌ เจฌเจพเจฐเฉ‡

1: Dimensionality reduction: Introduces the concept and need for reducing the complexity of highdimensional data in robotics.


2: Principal component analysis: Discusses PCA as a key linear technique for feature extraction and data compression.


3: Nonlinear dimensionality reduction: Explores nonlinear techniques for capturing complex data structures in robotics.


4: Eigenface: Covers the use of eigenfaces for facial recognition in robotics, demonstrating a realworld application of dimensionality reduction.


5: Empirical orthogonal functions: Describes a method for representing data in a way that captures important features for robotic systems.


6: Semidefinite embedding: Introduces this technique to preserve data relationships while reducing dimensionality, improving robotic data processing.


7: Linear discriminant analysis: Explains how LDA helps in classification tasks by focusing on class separability in reduced data.


8: Nonnegative matrix factorization: Describes how NMF helps in extracting partsbased representations from data, particularly for robotics.


9: Kernel principal component analysis: Expands on PCA with kernel methods to handle nonlinear data, crucial for robotics systems working with complex inputs.


10: Shogun (toolbox): Highlights the Shogun machine learning toolbox, which includes dimensionality reduction methods for robotic applications.


11: Spectral clustering: Covers this technique for clustering highdimensional data, an essential task in robotic perception and understanding.


12: Isomap: Discusses Isomap, a method for nonlinear dimensionality reduction, and its impact on improving robotic models.


13: Principal component regression: Links PCA with regression to reduce data dimensionality and improve predictive models in robotics.


14: Multilinear subspace learning: Introduces this advanced method for handling multidimensional data, boosting robot performance.


15: Mlpy: Details the Mlpy machine learning library, showcasing tools for dimensionality reduction in robotic systems.


16: Diffusion map: Focuses on the diffusion map technique for dimensionality reduction and its application to robotics.


17: Feature learning: Explores the concept of feature learning and its significance in enhancing robotic systemsโ€™ data interpretation.


18: Kernel adaptive filter: Discusses this filtering technique for adapting models to dynamic data, improving realtime robotic decisionmaking.


19: Random projection: Offers insights into how random projection techniques can speed up dimensionality reduction for large data sets in robotics.


20: Feature engineering: Introduces the process of designing features that help robots understand and interact with their environments more effectively.


21: Multivariate normal distribution: Concludes with an exploration of this statistical tool used in robotics for handling uncertainty and data modeling.

เจฒเฉ‡เจ–เจ• เจฌเจพเจฐเฉ‡

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual masterโ€™s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

เจ‡เจธ เจ†เจกเฉ€เจ“-เจ•เจฟเจคเจพเจฌ เจจเฉ‚เฉฐ เจฐเฉ‡เจŸ เจ•เจฐเฉ‹

เจ†เจชเจฃเฉ‡ เจตเจฟเจšเจพเจฐ เจฆเฉฑเจธเฉ‹

เจธเฉเจฃเจจ เจธเฉฐเจฌเฉฐเจงเฉ€ เจœเจพเจฃเจ•เจพเจฐเฉ€

เจธเจฎเจพเจฐเจŸเจซเจผเฉ‹เจจ เจ…เจคเฉ‡ เจŸเฉˆเจฌเจฒเฉˆเฉฑเจŸ
Google Play Books เจเจช เจจเฉ‚เฉฐ Android เจ…เจคเฉ‡ iPad/iPhone เจฒเจˆ เจธเจฅเจพเจชเจค เจ•เจฐเฉ‹เฅค เจ‡เจน เจคเฉเจนเจพเจกเฉ‡ เจ–เจพเจคเฉ‡ เจจเจพเจฒ เจธเจตเฉˆเจšเจฒเจฟเจค เจคเฉŒเจฐ 'เจคเฉ‡ เจธเจฟเฉฐเจ• เจ•เจฐเจฆเฉ€ เจนเฉˆ เจ…เจคเฉ‡ เจคเฉเจนเจพเจจเฉ‚เฉฐ เจ•เจฟเจคเฉ‹เจ‚ เจตเฉ€ เจ†เจจเจฒเจพเจˆเจจ เจœเจพเจ‚ เจ†เจซเจผเจฒเจพเจˆเจจ เจชเฉœเฉเจนเจจ เจฆเจฟเฉฐเจฆเฉ€ เจนเฉˆเฅค
เจฒเฉˆเจชเจŸเจพเจช เจ…เจคเฉ‡ เจ•เฉฐเจชเจฟเจŠเจŸเจฐ
เจคเฉเจธเฉ€เจ‚ เจ†เจชเจฃเฉ‡ เจ•เฉฐเจชเจฟเจŠเจŸเจฐ เจฆเจพ เจตเฉˆเฉฑเจฌ เจฌเฉเจฐเจพเจŠเจœเจผเจฐ เจตเจฐเจคเจฆเฉ‡ เจนเฉ‹เจ Google Play 'เจคเฉ‡ เจ–เจฐเฉ€เจฆเฉ€เจ†เจ‚ เจ—เจˆเจ†เจ‚ เจ•เจฟเจคเจพเจฌเจพเจ‚ เจชเฉœเฉเจน เจธเจ•เจฆเฉ‡ เจนเฉ‹เฅค

เจธเฉ€เจฐเฉ€เฉ› เจœเจพเจฐเฉ€ เจฐเฉฑเจ–เฉ‹

Fouad Sabry เจตเฉฑเจฒเฉ‹เจ‚ เจนเฉ‹เจฐ

เจฎเจฟเจฒเจฆเฉ€เจ†เจ‚-เจœเฉเจฒเจฆเฉ€เจ†เจ‚ เจ†เจกเฉ€เจ“ -เจ•เจฟเจคเจพเจฌเจพเจ‚