Data Science

ยท
ยท Gildan Media ยท เบšเบฑเบ™เบเบฒเบเป‚เบ”เบ Chris Sorensen
4,2
17 เบ„เบณเบ•เบดเบŠเบปเบก
เบ›เบถเป‰เบกเบชเบฝเบ‡
5 เบŠเบปเปˆเบงเป‚เบกเบ‡ 51 เบ™เบฒเบ—เบต
เบชเบฐเบšเบฑเบšเป€เบ•เบฑเบก
เบกเบตเบชเบดเบ”
เบšเปเปˆเป„เบ”เป‰เบขเบฑเป‰เบ‡เบขเบทเบ™เบเบฒเบ™เบˆเบฑเบ”เบญเบฑเบ™เบ”เบฑเบš เปเบฅเบฐ เบ„เบณเบ•เบดเบŠเบปเบก เบชเบถเบเบชเบฒเป€เบžเบตเปˆเบกเป€เบ•เบตเบก
เบ•เป‰เบญเบ‡เบเบฒเบ™เบ•เบปเบงเบขเปˆเบฒเบ‡ 39 เบ™เบฒเบ—เบต เบšเป? เบŸเบฑเบ‡เป„เบ”เป‰เบ—เบธเบเป€เบงเบฅเบฒ, เป€เบ–เบดเบ‡เปเบกเปˆเบ™เปƒเบ™เป€เบงเบฅเบฒเบญเบญเบšเบฅเบฒเบเบขเบนเปˆเบเปเบ•เบฒเบก.ย 
เป€เบžเบตเปˆเบก

เบเปˆเบฝเบงเบเบฑเบšเบ›เบถเป‰เบกเบญเปˆเบฒเบ™เบญเบญเบเบชเบฝเบ‡

It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

เบเบฒเบ™เบˆเบฑเบ”เบญเบฑเบ™เบ”เบฑเบš เปเบฅเบฐ เบ„เบณเบ•เบดเบŠเบปเบก

4,2
17 เบ„เบณเบ•เบดเบŠเบปเบก

เบเปˆเบฝเบงเบเบฑเบšเบœเบนเป‰เบ‚เบฝเบ™

John D. Kelleher is a professor of computer science and the Academic Leader of the Information, Communication, and Entertainment Research Institute at the Dublin Institute of Technology. He is the coauthor of Fundamentals of Machine Learning for Predictive Data Analytics (MIT Press).

Brendan Tierney, Oracle ACE Director, is an independent consultant and lectures on Data Mining and Advanced Databases in the Dublin Institute of Technology in Ireland. He has 23+ years of extensive experience working in the areas of Data Mining, Data Warehousing, Data Architecture and Database Design.

Chris Sorensen is a veteran audiobook narrator with over 160 titles to his name. He has received three AudioFile Earphones Awards, and his recording of Sent by Margaret Peterson Haddix was selected as one of the Best Audiobooks of 2010 by AudioFile magazine. He is a member of SAG-AFTRA and the APA.

เปƒเบซเป‰เบ„เบฐเปเบ™เบ™เบ›เบถเป‰เบกเบชเบฝเบ‡เบ™เบตเป‰

เบšเบญเบเบžเบงเบเป€เบฎเบปเบฒเบงเปˆเบฒเบ—เปˆเบฒเบ™เบ„เบดเบ”เปเบ™เบงเปƒเบ”.

เบ‚เปเป‰เบกเบนเบ™เบเบฒเบ™เบŸเบฑเบ‡

เบชเบฐเบกเบฒเบ”เป‚เบŸเบ™ เปเบฅเบฐ เปเบ—เบฑเบšเป€เบฅเบฑเบ”
เบ•เบดเบ”เบ•เบฑเป‰เบ‡ เปเบญเบฑเบš Google Play Books เบชเบณเบฅเบฑเบš Android เปเบฅเบฐ iPad/iPhone. เบกเบฑเบ™เบŠเบดเป‰เบ‡เบ‚เปเป‰เบกเบนเบ™เป‚เบ”เบเบญเบฑเบ”เบ•เบฐเป‚เบ™เบกเบฑเบ”เบเบฑเบšเบšเบฑเบ™เบŠเบตเบ‚เบญเบ‡เบ—เปˆเบฒเบ™ เปเบฅเบฐ เบญเบฐเบ™เบธเบเบฒเบ”เปƒเบซเป‰เบ—เปˆเบฒเบ™เบญเปˆเบฒเบ™เบ—เบฒเบ‡เบญเบญเบ™เบฅเบฒเบ เบซเบผเบท เปเบšเบšเบญเบญเบšเบฅเบฒเบเป„เบ”เป‰ เบšเปเปˆเบงเปˆเบฒเบ—เปˆเบฒเบ™เบˆเบฐเบขเบนเปˆเปƒเบช.
เปเบฅเบฑเบšเบ—เบฑเบญเบš เปเบฅเบฐ เบ„เบญเบกเบžเบดเบงเป€เบ•เบต
เบ—เปˆเบฒเบ™เบชเบฒเบกเบฒเบ”เบญเปˆเบฒเบ™เบ›เบถเป‰เบกเบ—เบตเปˆเบŠเบทเป‰เบœเปˆเบฒเบ™ Google Play เป‚เบ”เบเปƒเบŠเป‰เป‚เบ›เบฃเปเบเบฃเบกเบ—เปˆเบญเบ‡เป€เบงเบฑเบšเบ‚เบญเบ‡เบ„เบญเบกเบžเบดเบงเป€เบ•เบตเป„เบ”เป‰.

เป€เบžเบตเปˆเบกเป€เบ•เบตเบกเบˆเบฒเบ Brendan Tierney

เบ›เบถเป‰เบกเบญเปˆเบฒเบ™เบญเบญเบเบชเบฝเบ‡เบ—เบตเปˆเบ„เป‰เบฒเบเบ„เบทเบเบฑเบ™

เบšเบฑเบ™เบเบฒเบเป‚เบ”เบ Chris Sorensen