AI in Quantitative Analysis

Anand Vemula · Kulandiswa nge-AI ngu-Madison (kusukela ku-Google)
I-audiobook
3 ihora
Okungavamile
Ilandiswa yi-AI
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi
Ufuna isampula elingu-18 iminithi? Lalela noma kunini, nanoma ungaxhunyiwe ku-inthanethi. 
Engeza

Mayelana nale audiobook

AI in Quantitative Analysis explores the intersection of artificial intelligence and modern financial modeling. Structured into four comprehensive parts, the book guides readers from foundational concepts to advanced applications and ethical considerations in AI-driven quantitative finance.

Part I lays the groundwork, detailing the evolution of quantitative analysis and the integration of AI into financial systems. It covers essential mathematical and statistical principles, creating a solid base for understanding how AI models function in financial contexts.

Part II dives into core machine learning techniques, including supervised and unsupervised learning, time series modeling, and reinforcement learning. It explains how regression, classification, clustering, ARIMA, LSTM, Transformers, and policy gradient methods are used for price prediction, anomaly detection, and portfolio optimization.

Part III expands into sophisticated applications such as Natural Language Processing (NLP) for extracting sentiment and events from news and social media, Generative AI for simulating market scenarios and augmenting data, and Explainable AI tools like SHAP and LIME. It also discusses how AI enhances risk management, from fraud detection to credit scoring and stress testing.

Part IV focuses on practical implementation—highlighting programming languages (Python, R, Julia), machine learning libraries, backtesting tools, real-time data handling, deployment strategies, and MLOps in finance. The final chapter addresses critical ethical challenges, including bias, transparency, AI governance, and emerging technologies like quantum computing and neuromorphic architectures.

This book offers a detailed, application-rich guide for finance professionals, data scientists, and academics seeking to master the use of AI in quantitative financial research and decision-making.

Mayelana nomlobi

AI in Quantitative Analysis explores the intersection of artificial intelligence and modern financial modeling. Structured into four comprehensive parts, the book guides readers from foundational concepts to advanced applications and ethical considerations in AI-driven quantitative finance.

Part I lays the groundwork, detailing the evolution of quantitative analysis and the integration of AI into financial systems. It covers essential mathematical and statistical principles, creating a solid base for understanding how AI models function in financial contexts.

Part II dives into core machine learning techniques, including supervised and unsupervised learning, time series modeling, and reinforcement learning. It explains how regression, classification, clustering, ARIMA, LSTM, Transformers, and policy gradient methods are used for price prediction, anomaly detection, and portfolio optimization.

Part III expands into sophisticated applications such as Natural Language Processing (NLP) for extracting sentiment and events from news and social media, Generative AI for simulating market scenarios and augmenting data, and Explainable AI tools like SHAP and LIME. It also discusses how AI enhances risk management, from fraud detection to credit scoring and stress testing.

Part IV focuses on practical implementation—highlighting programming languages (Python, R, Julia), machine learning libraries, backtesting tools, real-time data handling, deployment strategies, and MLOps in finance. The final chapter addresses critical ethical challenges, including bias, transparency, AI governance, and emerging technologies like quantum computing and neuromorphic architectures.

This book offers a detailed, application-rich guide for finance professionals, data scientists, and academics seeking to master the use of AI in quantitative financial research and decision-making.

Linganisela le-audiobook

Sitshele ukuthi ucabangani.

Ulwazi lokulalela

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungafunda amabhuku athengwe ku-Google Play usebenzisa isiphequluli sewebhu kukhompyutha yakho.