AI in Quantitative Analysis

Anand Vemula · AI 朗讀:Madison (來自 Google)
有聲書
3 小時
完整足本
AI 朗讀
評分和評論未經驗證 瞭解詳情
要試聽 18 分鐘 嗎?隨時聆聽,離線亦可。 
新增

關於這本有聲書

AI in Quantitative Analysis explores the intersection of artificial intelligence and modern financial modeling. Structured into four comprehensive parts, the book guides readers from foundational concepts to advanced applications and ethical considerations in AI-driven quantitative finance.

Part I lays the groundwork, detailing the evolution of quantitative analysis and the integration of AI into financial systems. It covers essential mathematical and statistical principles, creating a solid base for understanding how AI models function in financial contexts.

Part II dives into core machine learning techniques, including supervised and unsupervised learning, time series modeling, and reinforcement learning. It explains how regression, classification, clustering, ARIMA, LSTM, Transformers, and policy gradient methods are used for price prediction, anomaly detection, and portfolio optimization.

Part III expands into sophisticated applications such as Natural Language Processing (NLP) for extracting sentiment and events from news and social media, Generative AI for simulating market scenarios and augmenting data, and Explainable AI tools like SHAP and LIME. It also discusses how AI enhances risk management, from fraud detection to credit scoring and stress testing.

Part IV focuses on practical implementation—highlighting programming languages (Python, R, Julia), machine learning libraries, backtesting tools, real-time data handling, deployment strategies, and MLOps in finance. The final chapter addresses critical ethical challenges, including bias, transparency, AI governance, and emerging technologies like quantum computing and neuromorphic architectures.

This book offers a detailed, application-rich guide for finance professionals, data scientists, and academics seeking to master the use of AI in quantitative financial research and decision-making.

關於作者

AI in Quantitative Analysis explores the intersection of artificial intelligence and modern financial modeling. Structured into four comprehensive parts, the book guides readers from foundational concepts to advanced applications and ethical considerations in AI-driven quantitative finance.

Part I lays the groundwork, detailing the evolution of quantitative analysis and the integration of AI into financial systems. It covers essential mathematical and statistical principles, creating a solid base for understanding how AI models function in financial contexts.

Part II dives into core machine learning techniques, including supervised and unsupervised learning, time series modeling, and reinforcement learning. It explains how regression, classification, clustering, ARIMA, LSTM, Transformers, and policy gradient methods are used for price prediction, anomaly detection, and portfolio optimization.

Part III expands into sophisticated applications such as Natural Language Processing (NLP) for extracting sentiment and events from news and social media, Generative AI for simulating market scenarios and augmenting data, and Explainable AI tools like SHAP and LIME. It also discusses how AI enhances risk management, from fraud detection to credit scoring and stress testing.

Part IV focuses on practical implementation—highlighting programming languages (Python, R, Julia), machine learning libraries, backtesting tools, real-time data handling, deployment strategies, and MLOps in finance. The final chapter addresses critical ethical challenges, including bias, transparency, AI governance, and emerging technologies like quantum computing and neuromorphic architectures.

This book offers a detailed, application-rich guide for finance professionals, data scientists, and academics seeking to master the use of AI in quantitative financial research and decision-making.

為這本有聲書評分

請分享你的寶貴意見。

聆聽資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網頁瀏覽器閱讀從 Google Play 購買的書籍。

更多Anand Vemula的著作

類似的有聲書

旁白:Madison