AI in Quantitative Analysis

Anand Vemula ┬╖ рдПрдЖрдИ рдХреА рдорджрдж рд╕реЗ Google рдХреЗ рдЬрдирд░реЗрдЯ рдХрд┐рдП рдЧрдП Madison рдХреА рдЖрд╡рд╛рдЬрд╝ рдореЗрдВ рдСрдбрд┐рдпреЛрдмреБрдХ
рдСрдбрд┐рдпреЛ рдмреБрдХ
3 рдШрдВрдЯреЗ
рдЬрд╝реНрдпрд╛рджрд╛ рд╢рдмреНрджреЛрдВ рдореЗрдВ
рдПрдЖрдИ рдХреА рдорджрдж рд╕реЗ рдмреЛрд▓рдХрд░ рд╕реБрдирд╛рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ
рдХреНрдпрд╛ 18 рдорд┐рдирдЯ рдХреЗ рд▓рд┐рдП рдЖрдЬрд╝рдорд╛рдиреЗ рдореЗрдВ рдЖрдкрдХреА рджрд┐рд▓рдЪрд╕реНрдкреА рд╣реИ? рдХрднреА рднреА рд╕реБрдиреЗрдВ, рдЪрд╛рд╣реЗ рдЖрдк рдСрдлрд╝рд▓рд╛рдЗрди рд╣реА рдХреНрдпреЛрдВ рди рд╣реЛрдВ┬а
рдЬреЛрдбрд╝реЗрдВ

рдЗрд╕ рдСрдбрд┐рдпреЛ рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

AI in Quantitative Analysis explores the intersection of artificial intelligence and modern financial modeling. Structured into four comprehensive parts, the book guides readers from foundational concepts to advanced applications and ethical considerations in AI-driven quantitative finance.

Part I lays the groundwork, detailing the evolution of quantitative analysis and the integration of AI into financial systems. It covers essential mathematical and statistical principles, creating a solid base for understanding how AI models function in financial contexts.

Part II dives into core machine learning techniques, including supervised and unsupervised learning, time series modeling, and reinforcement learning. It explains how regression, classification, clustering, ARIMA, LSTM, Transformers, and policy gradient methods are used for price prediction, anomaly detection, and portfolio optimization.

Part III expands into sophisticated applications such as Natural Language Processing (NLP) for extracting sentiment and events from news and social media, Generative AI for simulating market scenarios and augmenting data, and Explainable AI tools like SHAP and LIME. It also discusses how AI enhances risk management, from fraud detection to credit scoring and stress testing.

Part IV focuses on practical implementationтАФhighlighting programming languages (Python, R, Julia), machine learning libraries, backtesting tools, real-time data handling, deployment strategies, and MLOps in finance. The final chapter addresses critical ethical challenges, including bias, transparency, AI governance, and emerging technologies like quantum computing and neuromorphic architectures.

This book offers a detailed, application-rich guide for finance professionals, data scientists, and academics seeking to master the use of AI in quantitative financial research and decision-making.

рд▓реЗрдЦрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ

AI in Quantitative Analysis explores the intersection of artificial intelligence and modern financial modeling. Structured into four comprehensive parts, the book guides readers from foundational concepts to advanced applications and ethical considerations in AI-driven quantitative finance.

Part I lays the groundwork, detailing the evolution of quantitative analysis and the integration of AI into financial systems. It covers essential mathematical and statistical principles, creating a solid base for understanding how AI models function in financial contexts.

Part II dives into core machine learning techniques, including supervised and unsupervised learning, time series modeling, and reinforcement learning. It explains how regression, classification, clustering, ARIMA, LSTM, Transformers, and policy gradient methods are used for price prediction, anomaly detection, and portfolio optimization.

Part III expands into sophisticated applications such as Natural Language Processing (NLP) for extracting sentiment and events from news and social media, Generative AI for simulating market scenarios and augmenting data, and Explainable AI tools like SHAP and LIME. It also discusses how AI enhances risk management, from fraud detection to credit scoring and stress testing.

Part IV focuses on practical implementationтАФhighlighting programming languages (Python, R, Julia), machine learning libraries, backtesting tools, real-time data handling, deployment strategies, and MLOps in finance. The final chapter addresses critical ethical challenges, including bias, transparency, AI governance, and emerging technologies like quantum computing and neuromorphic architectures.

This book offers a detailed, application-rich guide for finance professionals, data scientists, and academics seeking to master the use of AI in quantitative financial research and decision-making.

рдЗрд╕ рдСрдбрд┐рдпреЛ рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдЬрд╛рдирдХрд╛рд░реА рдХреЛ рд╕реБрдирдирд╛

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНтАНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИрдВ рдкреБрд╕реНтАНрддрдХреЗрдВ рдкрдврд╝ рд╕рдХрддреЗ рд╣реИрдВ.