Pythagorea 60°

āĻāĻĒā§° āĻ­āĻŋāϤ⧰āϤ āĻ•ā§ā§°ā§Ÿ āϏ⧁āĻŦāĻŋāϧāĻž
ā§Ē.ā§Š
ā§§.ā§­ā§§Â āĻšāĻžāϜāĻžā§° āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž
ā§§Â āϞāĻžāĻ–+
āĻĄāĻžāωāύāĻ˛â€™āĻĄ
āĻļāĻŋāĻ•ā§āώāϕ⧰ āĻĻā§āĻŦāĻžā§°āĻž āĻ…āύ⧁āĻŽā§‹āĻĻāĻŋāϤ
āϏāĻŽāϞ⧰ āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ
PEGI ā§Š
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ

āĻāχ āĻ—ā§‡â€™āĻŽāĻŸā§‹ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

Check how well you know the geometry by solving construction problems on a triangular grid.

> 277 tasks: from very simple to really hard
> 24 subjects to explore
> 66 geometric terms in a glossary
> Easy to use


*** About ***
Pythagorea 60° is a collection of more than 270 geometric problems of different kind that can be solved without complex constructions or calculations. All objects are drawn on a grid whose cells are equilateral triangles. A lot of levels can be solved using just your geometric intuition or by finding natural laws, regularity, and symmetry.

*** Just play ***
There are no sophisticated instruments and moves are not counted. You can construct straight lines and segments only and set points in line intersections. It looks very easy but it is enough to provide an infinite number of interesting problems and unexpected challenges.

*** Is this game for you? ***
Euclidea users can take a different view of constructions, discover new methods and tricks, and check their geometric intuition.

Pythagorea users who played on a square grid will not be bored. The triangular grid is full of surprises.

If you have just started your acquaintance with geometry, the game will help you understand important ideas and properties of the Euclidean geometry.

If you passed the course of geometry some time ago, the game will be useful to renew and check your knowledge because it covers most of ideas and notions of the elementary geometry.

If you are not on good terms with geometry, Pythagorea 60° will help you to discover another side of the subject. We get a lot of user responses that Pythagorea and Euclidea made it possible to see the beauty and naturalness of geometric constructions and even fall in love with geometry.

And do not miss your chance to familiarize children with mathematics. Pythagorea is an excellent way to make friends with geometry and benefit from spending time together.

*** All definitions at your fingertips ***
If you forgot a definition, you can instantly find it in the app’s glossary. To find the definition of any term that is used in conditions of a problem, just tap on the Info (“i”) button.

*** Main topics ***
> Length, distance, and area
> Parallels and perpendiculars
> Angles and triangles
> Angle and perpendicular bisectors, medians, and altitudes
> Pythagorean Theorem
> Circles and tangents
> Parallelograms, trapezoids, and rhombuses
> Symmetry, reflection, and rotation

*** Why Pythagorea ***
Pythagoras of Samos was a Greek philosopher and mathematician. He lived in 6th century BC. One of the most famous geometric facts bears his name: the Pythagorean Theorem. It states that in a right triangle the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of those of the two other sides. While playing Pythagorea you often meet right angles and rely on the Pythagorean Theorem to compare lengths of segments and distances between points. That is why the game is named after Pythagoras.

*** Questions? Comments? ***
Send in your inquiries and stay up-to-date on the latest Pythagorea 60° news at http://www.euclidea.xyz/
āφāĻĒāĻĄā§‡â€™āϟ āϕ⧰āĻž āϤāĻžā§°āĻŋāĻ–
ā§Ļ⧝-ā§Ļā§Ģ-⧍ā§Ļ⧍ā§Ē

āĻĄā§‡āϟāĻž āϏ⧁⧰āĻ•ā§āώāĻž

āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāϏāĻ•āϞ⧇ āφāĻĒā§‹āύāĻžā§° āĻĄā§‡āϟāĻž āϕ⧇āύ⧇āĻ•ā§ˆ āϏāĻ‚āĻ—ā§ā§°āĻš āφ⧰⧁ āĻļā§āĻŦā§‡ā§ŸāĻžā§° āϕ⧰⧇ āĻ¸ā§‡ā§ŸāĻž āĻŦ⧁āϜāĻŋ āĻĒā§‹ā§ąāĻžā§° āϜ⧰āĻŋ⧟āϤ⧇ āϏ⧁⧰āĻ•ā§āώāĻž āφ⧰āĻŽā§āĻ­ āĻšā§ŸāĨ¤ āĻĄā§‡āϟāĻžā§° āĻ—ā§‹āĻĒāĻ¨ā§€ā§ŸāϤāĻž āφ⧰⧁ āϏ⧁⧰āĻ•ā§āώāĻž āĻĒā§ā§°āĻŖāĻžāϞ⧀ āφāĻĒā§‹āύāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§°, āĻ…āĻžā§āϚāϞ āφ⧰⧁ āĻŦāϝāĻŧāϏ⧰ āĻ“āĻĒā§°āϤ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āϕ⧰āĻŋ āĻ­āĻŋāĻ¨ā§āύ āĻšâ€™āĻŦ āĻĒāĻžā§°ā§‡āĨ¤ āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāĻ—ā§°āĻžāĻ•ā§€ā§Ÿā§‡ āĻāχ āϤāĻĨā§āϝāĻ–āĻŋāύāĻŋ āĻĒā§ā§°āĻĻāĻžāύ āϕ⧰āĻŋāϛ⧇ āφ⧰⧁ āϏāĻŽā§Ÿā§° āϞāϗ⧇ āϞāϗ⧇ āĻā§ŸāĻž āφāĻĒāĻĄā§‡â€™āϟ āϕ⧰āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āϤ⧃āĻ¤ā§€ā§Ÿ āĻĒāĻ•ā§āώ⧰ āϏ⧈āϤ⧇ āϕ⧋āύ⧋ āĻĄā§‡āϟāĻž āĻļā§āĻŦ⧇āϝāĻŧāĻžā§° āϕ⧰āĻž āύāĻžāχ
āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāχ āĻĄā§‡āϟāĻž āĻļā§āĻŦā§‡ā§ŸāĻžā§° āϕ⧰āĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ˜ā§‹āώāĻŖāĻž āϕ⧰⧇ āϏ⧇āχ āĻŦāĻŋāĻˇā§Ÿā§‡ āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•
āĻāχ āĻāĻĒā§â€ŒāĻŸā§‹ā§ąā§‡ āĻāχ āϧ⧰āĻŖā§° āĻĄā§‡āϟāĻž āϏāĻ‚āĻ—ā§ā§°āĻš āϕ⧰āĻŋāĻŦ āĻĒāĻžā§°ā§‡
āĻāĻĒā§° āĻ•āĻžā§°ā§āϝāĻ•āϞāĻžāĻĒ
āĻĄā§‡āϟāĻž āĻāύāĻ•ā§ā§°āĻŋāĻĒā§āϟ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ
āĻĄā§‡āϟāĻž āĻŽāϚāĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋ
Play āĻĒā§°āĻŋ⧟āĻžāϞ⧰ āύ⧀āϤāĻŋ āĻ…āύ⧁āϏ⧰āĻŖ āϕ⧰āĻŋāĻŦāϞ⧈ āĻŦāĻĻā§āϧāĻĒā§°āĻŋāϕ⧰

āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻžāϏāĻŽā§‚āĻš

ā§Ē.ā§Š
ā§§.ā§Ģā§­Â āĻšāĻžāϜāĻžā§° āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž

āύāϤ⧁āύ āĻ•āĻŋ āφāϛ⧇

Fixed bugs.